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Abstract:  Ensemble multifeatured deep learning methodologies have gained significant traction as a solution to overcome the 

limitations of single deep learning models in terms of generalization, robustness, and overall performance. This survey offers 

a comprehensive review of ensemble multifeatured models, highlighting their applications across critical domains, including 

computer vision, medical imaging, natural language processing, and speech recognition. By integrating multiple models and 

diverse feature sets, these ensemble techniques have demonstrated superior adaptability and performance in solving complex, 

real-world problems. 
In addition to covering practical applications, this paper discusses the challenges associated with ensemble models, such as 

interpretability, computational complexity, and adversarial robustness. We delve into cutting-edge solutions to these 

challenges, particularly focusing on advancements in personalized and federated learning, as well as improved ensemble 

selection techniques. The need for novel algorithms, frameworks, and hardware architectures that can manage the intensive 

computational demands of ensemble models is also emphasized. Looking ahead, the survey highlights future research 

directions aimed at optimizing trade-offs between model complexity, accuracy, and computational resource usage. This is 

crucial for achieving scalable, efficient, and practical deployment of ensemble multifeatured deep learning systems across 

various industries and domains. 
Keywords: Ensemble Learning, Multifeatured Deep Learning, Model Generalization, , Personalized Learning, Medical Imaging, 

Natural Language Processing, Speech Recognition, Model Interpretability, Ensemble Model Selection, Deep Learning 

Architectures. 
 --------------------------------------------------------------------------------------------------------

I. INTRODUCTION 
 

Deep learning has transformed numerous fields, such as 

computer vision, natural language processing, and speech 

recognition, among others. With the increasing complexity of 

real-world problems and the abundance of large datasets, 

deep learning models have achieved significant success 

across various applications. Despite this progress, individual 

deep learning models often face challenges related to 

generalization, robustness, and overall performance, which 

can limit their effectiveness in certain scenarios. 
Ensemble multifeatured deep learning is a powerful 

framework that combines multiple deep learning algorithms 

for feature selection, using a sophisticated ensemble approach 

to aggregate the results of each contributing model. This 

method helps reduce information loss and overfitting, 

common issues with single models, while also tackling the 

challenges posed by imbalanced data, especially in 

multimedia big data and large-scale applications. 

The concept of ensemble learning, which includes 

techniques like bagging, boosting, and stacking, has been part 

of traditional machine learning since the 1990s. These 

methods gained significant traction in the 2000s, particularly 

after the remarkable success of deep learning. By combining 

the strengths of different models, ensemble approaches 

enhance overall performance, enabling the system to 

generalize better and be more robust in diverse problem 

settings[3]. 

In essence, ensemble multifeatured deep learning 
provides a more flexible and adaptable solution, ensuring that 

the shortcomings of individual models are minimized. This 

approach has become increasingly important as data 

complexity and scale continue to grow, making it a vital tool 

for addressing modern challenges in deep learning 

applications. 

Ensemble multifeatured deep learning is a highly 

sophisticated framework designed to leverage the combined 

power of multiple deep learning models and diverse input 

features to enhance prediction accuracy and generalization. In 
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real-world applications, the complexity of data often 

necessitates the use of multiple data modalities (such as text, 

images, audio, or video) and different deep learning 

algorithms for feature extraction and classification. By 

employing an ensemble approach, this architecture seeks to 
mitigate the limitations of single deep learning models, such 

as overfitting, information loss, and the inability to generalize 

well on unseen data. 

In this architecture, various deep learning models 

process different types of input features in parallel, and the 

extracted information is then combined in a fusion layer. 

After fusion, an ensemble algorithm further refines the 

predictions by aggregating the results of the models. This 

process ultimately enhances performance, making the 

architecture a robust choice for tackling complex tasks like 

multimedia data classification, large-scale applications, and 

handling imbalanced datasets indicator named incinerability 
index or i- Index was developed by the authors. In addition to 

quantifying the incinerability of MSW, i- Index may be used 

to determine the feasibility of waste incineration for a 

particular city. It may thus be used while framing integrated 

waste management  

Input Features 
The first component of the ensemble multifeatured 

deep learning architecture involves the input features, which 

are the raw data provided to the system. These features can 

come from multiple modalities, such as text, images, audio, 

or video, depending on the task at hand. For example, in 
multimedia applications, an image classification model might 

take an image as input, while a natural language processing 

(NLP) model would take text data. Each input feature is 

treated as a separate branch in the overall architecture, which 

allows for the independent processing of these features by the 

appropriate deep learning models[1]. 

For instance, consider a scenario where the input 

data consists of both text and images, such as in an image 

captioning task. In this case, the text is processed by a 

recurrent neural network (RNN) to capture sequential 

dependencies, while the image is processed by a 

convolutional neural network (CNN) to extract spatial 
features. The ensemble multifeatured deep learning 

architecture allows these distinct input modalities to be 

handled simultaneously, ensuring that both the textual and 

visual information are preserved during the feature extraction 

process. 

Deep Learning Models 
The next stage of the architecture involves applying 

deep learning models to the input features. Depending on the 

type of data being processed, different models are employed 

to extract relevant features. Some common deep learning 

models used include: 

 Convolutional Neural Networks (CNNs): CNNs 

are widely used for image and video processing due 

to their ability to capture spatial hierarchies and 

patterns in the data. They are particularly effective in 

tasks like object detection, image segmentation, and 

video classification. 

 Recurrent Neural Networks (RNNs): RNNs, and 

their more advanced variants like Long Short-Term 

Memory (LSTM) networks and Gated Recurrent 

Units (GRUs), are ideal for sequential data such as 

text and audio. These networks are used extensively 
in tasks like language modeling, machine 

translation, and speech recognition. 

 Transformer Models: Transformer models, 

particularly those utilizing attention mechanisms 

like BERT and GPT, have revolutionized NLP tasks 

by enabling models to capture long-range 

dependencies in the text without the sequential 

limitations of RNNs. 

 Auto encoders: Auto encoders can be employed for 

tasks like dimensionality reduction or unsupervised 

feature learning. These models are useful in 
scenarios where the input features are high-

dimensional and need to be compressed before being 

processed by the fusion layer. 

Each of these deep learning models independently 

processes its respective input feature and extracts the most 

relevant patterns and representations. This parallel processing 

allows the architecture to capture a wide range of features 

from different modalities, which can then be combined in the 

fusion layer[1]. 

Fusion Layers 
Once the deep learning models have extracted 

features from the input data, the next step in the architecture 
involves combining these learned features in what is known 

as the fusion layer. The fusion layer serves as a bridge 

between the individual models and the final ensemble 

algorithm. There are several techniques that can be employed 

in the fusion layer to merge the learned features effectively. 

Some of the common fusion techniques include: 

1. Concatenation: In this method, the outputs from each 

deep learning model are simply concatenated along the 

feature dimension, creating a combined feature vector 

that incorporates information from all input modalities. 

This approach preserves the original structure of the 
features but can lead to high-dimensional feature vectors, 

which may increase the computational complexity of the 

model. 

2. Averaging: In the averaging technique, the outputs of 

the individual models are averaged to produce a single 

feature representation. This approach is computationally 

efficient and helps to reduce the dimensionality of the 

combined features, but it may lead to the loss of 

important information, especially when the input 

modalities are highly diverse. 

3. Weighted Fusion: Weighted fusion involves assigning 

different weights to the outputs of the models based on 
their importance. For example, in a multimodal 

sentiment analysis task, the text data might be more 

important than the accompanying image, so the text 

model's output could be assigned a higher weight in the 

fusion process. The challenge here is determining the 

appropriate weights for each modality, which often 

requires domain expertise or optimization techniques. 



|| Volume 7 || Issue 07 || 2024 ||                                 ISO 3297:2007 Certified                                       ISSN (Online) 2456-3293 

25 

WWW.OAIJSE.COM 

4. Attention Mechanism: Attention mechanisms have 

gained prominence due to their ability to selectively 

focus on the most relevant parts of the input data. In the 

context of ensemble multifeatured deep learning, 

attention mechanisms can be applied to the outputs of the 
deep learning models, allowing the system to prioritize 

certain features based on their importance for the task at 

hand. This dynamic weighting of features often leads to 

better performance in tasks like image captioning and 

machine translation. 

5. Feature Interaction Fusion: This more advanced fusion 

technique explores interactions between features 

extracted from different modalities. Instead of simply 

merging features, this method identifies relationships 

between them, enhancing the model’s ability to generate 

more meaningful representations. For example, in a 

multimodal emotion recognition task, the interaction 
between facial expressions (from images) and vocal tone 

(from audio) could be more important than the individual 

features alone. 

By applying one or more of these fusion techniques, 

the architecture effectively consolidates the features from 

multiple deep learning models into a unified representation 

that can be further processed by the ensemble algorithm. 

Ensemble Algorithms 
After the fusion layer has combined the learned 

features from the deep learning models, the final step in the 

architecture involves applying an ensemble algorithm to 
produce the final prediction. The ensemble algorithm is 

responsible for aggregating the predictions made by the 

individual models, ensuring that the strengths of each model 

are maximized while minimizing their weaknesses. Some of 

the common ensemble techniques used in this architecture 

include: 

1. Voting: In voting-based ensemble methods, the 

predictions of each model are treated as votes, and 

the final prediction is determined by majority vote 

(in the case of classification tasks) or by averaging 

the predictions (in regression tasks). This method is 

simple yet effective, particularly when the individual 
models are diverse and make complementary 

predictions. 

2. Stacking: Stacking involves training a second-level 

model, known as a meta-learner, that takes the 

predictions of the individual models as input and 

produces the final output. The meta-learner is 

trained to learn how to best combine the predictions 

of the base models, leading to more accurate final 

predictions. This method is particularly useful when 

the individual models have varying strengths across 

different parts of the data. 
3. Boosting: Boosting is a sequential ensemble method 

in which models are trained one after the other, with 

each new model focusing on correcting the errors 

made by the previous models. Techniques like 

AdaBoost and Gradient Boosting are commonly 

used in boosting-based ensembles. Boosting can 

significantly improve the performance of the model, 

but it can also be computationally expensive. 

4. Bagging: Bagging involves training multiple models 

on different subsets of the data, each of which is 

sampled with replacement. The final prediction is 
made by averaging the predictions of the individual 

models. Random Forest is a popular bagging-based 

ensemble method. Bagging helps to reduce variance 

and improve the generalization ability of the model. 

By using an ensemble algorithm, the architecture 

ensures that the final prediction is more accurate and robust 

than the predictions of any individual model. The ensemble 

algorithm aggregates the strengths of the different models, 

leading to improved performance on a wide range of tasks[5]. 

Advantages of Ensemble Multifeatured Deep Learning 

Architecture 
The ensemble multifeatured deep learning 

architecture offers several key advantages over traditional 

deep learning models: 

1. Improved Generalization: By combining multiple 

models, the architecture is able to generalize better 

to new, unseen data. This is particularly important in 

tasks where the training data is limited or 

imbalanced, as the ensemble approach helps to 

mitigate overfitting. 

2. Enhanced Robustness: The architecture is more 

robust to noisy or incomplete data, as the ensemble 

algorithm can rely on the predictions of multiple 
models. This reduces the impact of errors made by 

individual models and leads to more reliable 

predictions. 

3. Handling of Imbalanced Data: Ensemble learning 

methods, particularly boosting, are well-suited for 

handling imbalanced data. By focusing on correcting 

the errors made by previous models, boosting helps 

to improve the performance of the model on 

underrepresented classes. 

4. Scalability: The modular nature of the architecture 

allows it to scale to large datasets and complex 

tasks. New models can be easily added to the 
ensemble, and the architecture can be adapted to 

different types of data. 

Versatility: The architecture can be applied to a wide range 

of tasks, including image classification, natural language 

processing, speech recognition, and multimodal data fusion. 

This versatility makes it a valuable tool for tackling complex, 

real-world problems. 
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Figure 1 : Generic high-level layered architecture of 

ensemble multifeatured deep learning with fusion layer 

and ensemble algorithm[3] 

II LITERATURE SURVEY 
Machine learning approaches were employed for 

diabetes diagnosis in [15] and [7], highlighting the 

effectiveness of Adaboost.M1 and Logit Boost algorithms. 

[16] introduced a boosting algorithm for diabetes diagnosis, 

demonstrating improved accuracy. [17] conducted a 

comparative study of machine learning algorithms for 

diabetes diagnosis, emphasizing the importance of feature 

selection and hyperparameter tuning. [20] presented a 

comparative study of machine learning methods for diabetes 
diagnosis, highlighting the strengths and weaknesses of 

different algorithms. [22] and [18] focused on feature 

selection and ensemble learning, proposing a diabetes 

prediction model based on Boruta feature selection and 

ensemble learning, and introducing a novel data mining 

technique for type 2 diabetes prediction, respectively. The 

importance of feature selection was emphasized in both 

papers. Clustering and classification techniques were 

employed in [19] and [23], developing a PSOFCM based data 

mining model for diabetic disease prediction, and presenting 

a decision tree-based model for diabetes diagnosis, 
respectively. The PIMA Indian Diabetes Dataset, a widely 

used dataset for diabetes diagnosis, was provided in [24]. [25] 

and [26] offered documentation for scikit-learn and 

TensorFlow, popular machine learning libraries in Python. 

Based on the literature review, the following insights and 

recommendations can be drawn for implementing this 

project: feature selection and engineering are crucial, and 

Boruta feature selection and ensemble learning can be 

explored for improved accuracy. Adaboost.M1, LogitBoost, 

and decision trees have shown promising results in diabetes 

diagnosis, and a comparative study of different algorithms 
can help identify the best approach for the project. 

Hyperparameter tuning is crucial for achieving optimal 

results, and grid search, random search, or Bayesian 

optimization can be employed for hyperparameter tuning. 

The PIMA Indian Diabetes Dataset is a widely used and well 

established dataset for diabetes diagnosis, but exploring other 

datasets or collecting new data can provide more 

comprehensive results. Finally, scikit-learn and TensorFlow 

are popular and well-documented machine learning libraries 

in Python, and familiarity with these libraries can facilitate 

the implementation of the project. 

Ensemble learning is a powerful approach in 
machine learning that combines the predictions of multiple 

models, referred to as "base learners," to solve the same 

problem. By aggregating the strengths of individual models, 

ensemble learning techniques are able to improve 

generalization, reduce errors, and enhance overall 

performance. This approach is particularly useful when single 

models struggle with complex data or overfit on small 

datasets, as combining multiple models can provide a more 

balanced and robust solution. 

Several well-known ensemble learning methods 

have been developed, each with its own strengths and 
strategies for model combination. The most prominent 

techniques include Bagging (Bootstrap Aggregating), 

Boosting, and Stacking. 

Bagging (Bootstrap Aggregating) 
Bagging is an ensemble learning technique where 

multiple instances of the same base model are trained 

independently on different subsamples of the training data. 

These subsamples are created by randomly selecting data 

points with replacement (i.e., bootstrapping). The final 

prediction is made by averaging the predictions of all models 

in the case of regression or taking a majority vote for 

classification tasks. 
A classic example of a bagging algorithm is the 

Random Forest, which is composed of multiple decision 

trees trained on different bootstrapped samples of the dataset. 

The diversity in training sets and the independence of model 

training reduce the variance of the overall model, improving 

generalization and robustness. Random Forests are 

particularly effective for high-dimensional datasets and are 

widely used due to their ability to handle large amounts of 

data while maintaining accuracy. By averaging predictions 

across multiple decision trees, Random Forests can make 

accurate predictions while mitigating the risk of overfitting 
that single decision trees often suffer from. 

Boosting 
Boosting is another ensemble learning technique, 

but it takes a sequential approach. In boosting, models are 

trained one after the other, with each subsequent model 

focusing on correcting the errors made by the combined 

ensemble of the previous models. Instead of training all 
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models in parallel like in bagging, boosting adjusts the 

weights of the data points that were misclassified in previous 

iterations, allowing the subsequent models to pay more 

attention to these harder-to-classify instances.[1] 

Two well-known boosting algorithms are AdaBoost 
and Gradient Boosting. AdaBoost (Adaptive Boosting) 

works by assigning higher weights to the misclassified 

examples, ensuring that the next model in the sequence learns 

to correct those mistakes. The process continues iteratively, 

and the final prediction is made by a weighted sum of the 

predictions from each model, with higher weights assigned to 

more accurate models. Gradient Boosting is another popular 

method where models are trained to minimize the residual 

errors (the difference between the predicted and actual 

values) of the previous models. It effectively reduces both 

bias and variance, making it a highly effective technique for 

both regression and classification tasks. 
Boosting generally results in models that have 

higher accuracy compared to individual models or even 

bagging methods. However, one of the trade-offs is that 

boosting can be more computationally intensive and prone to 

overfitting if not carefully tuned. 

Stacking 
Stacking, also known as stacked generalization, is an 

ensemble learning technique that differs from bagging and 

boosting in that it involves training several different types of 

models (as opposed to instances of the same model) and 

using their predictions as inputs for a final model, referred to 
as a "meta-learner" or "combiner." The meta-learner can be 

any machine learning algorithm, such as linear regression, 

decision trees, or even deep neural networks, which learns 

how to combine the predictions from the base models[10]. 

For example, in a stacking ensemble, a support 

vector machine (SVM), decision tree, and a neural network 

might be trained on the same dataset. Their predictions are 

then passed to the meta-learner, which analyzes the patterns 

in these predictions to make the final output. The advantage 

of stacking is that it allows the ensemble to leverage the 

strengths of different models, particularly when those models 

perform well on different parts of the data. This diversity in 
model types can lead to significant performance gains, as the 

weaknesses of one model may be compensated by the 

strengths of another. 

One challenge in stacking is ensuring that the base 

models are sufficiently different from one another, as 

combining highly similar models can lead to redundant 

information and diminish the effectiveness of the ensemble. 

Additionally, the choice of meta-learner plays a critical role 

in the success of the stacking method. Simple models like 

linear regression are often used as meta-learners because they 

are easy to train and less likely to overfit, but more complex 
models like neural networks can also be effective, especially 

when handling non-linear relationships 

III SYSTEM ARCHITECTURE 

 

1 Data Collection & Integration 

   In this stage, data from multiple sources is gathered, 

such as sensors, APIs, databases, or user inputs. This raw data 

is integrated into a unified format to ensure consistency for 

further processing. In a project system architecture, a robust 

data pipeline (e.g., using Apache Kafka or Apache NiFi) 
collects and ingests data into centralized storage, such as a 

data lake or distributed database. The architecture should 

support real-time and batch data collection, ensuring 

scalability for large-scale applications. Integration ensures 

seamless data flow, enabling the use of diverse data types like 

text, images, and structured data for model training. 

2 Data Preprocessing & Feature Engineering 

Data preprocessing involves cleaning and transforming 

the raw data into a format suitable for machine learning. This 

includes handling missing values, normalization, and dealing 

with outliers. Feature engineering involves selecting or 

creating the most relevant features that will enhance model 

performance. In the system architecture, this process is 

computationally intensive and relies on distributed computing 

frameworks like Spark or cloud-based systems (AWS, GCP). 

Data transformation tools and pipelines are implemented to 

ensure that data is prepared efficiently. Pre-processed data is 

then stored for easy access by the machine learning models 

during training. 

 
Figure 2 :  Flow Diagram 

3 Machine Learning (Ensemble Methods) & Model 

Development 
This stage focuses on developing machine learning 

models using ensemble methods, which combine multiple 

models to improve predictive accuracy and robustness. 
Algorithms like bagging, boosting, and stacking are applied 

to optimize model performance. The system architecture 

includes a high-performance computing environment, often 

leveraging cloud-based GPU instances or distributed 

computing clusters to handle large datasets. Frameworks such 

as TensorFlow, PyTorch, or scikit-learn are used for model 

development. Model training also involves hyperparameter 
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tuning and cross-validation to ensure that the ensemble 

models generalize well across various types of data.[8] 

4 Model Deployment & Web Application 

Development 
After training, the machine learning models are 

deployed in production environments. This deployment could 

take the form of APIs, web services, or integration into 

mobile/web applications for real-time usage[13]. The 

architecture uses containerization tools like Docker, or 

Kubernetes, for scalable and efficient model deployment. 

Web application development involves creating an interface 

where users can interact with the models, submitting inputs to 

get predictions. The deployed model communicates with 

front-end applications or user interfaces through RESTful 

APIs or GraphQL, allowing real-time access to the 

predictions generated by the ensemble models. 

5 Testing & Validation 
Testing and validation ensure that the deployed 

model meets performance expectations. This phase involves 

both offline validation, using reserved test datasets, and 

online validation using real-world data. A/B testing or 

performance monitoring mechanisms like confusion matrices, 

accuracy metrics, and ROC curves are applied to evaluate 

model accuracy. In system architecture, automated testing 

frameworks and CI/CD pipelines (e.g., Jenkins) ensure that 

the model operates smoothly and adapts to new data. Testing 

includes integration with real-time data streams and the 

feedback loop mechanism for continuous learning and 
refinement of the model's performance[2]. 

6 Deployment & Maintenance 

The final stage involves the continuous monitoring, 

maintenance, and updating of the deployed model. In the 

system architecture, monitoring tools such as Prometheus or 

Grafana track model performance, accuracy, and usage in real 

time. If the model experiences drift or performance 

degradation due to new data patterns, retraining is initiated. 

Maintenance also includes version control (using MLflow or 

DVC), enabling rollbacks if required. Regular updates, bug 

fixes, and model improvements are part of the long-term 

maintenance cycle to ensure optimal performance in a 
dynamic, real-world environment where data is continually 

evolving[4]. 

 

IV SOFTWARE AND HARDWARE REQUIREMENTS 

 

Software Requirements: 
1. Operating System: Linux (e.g., Ubuntu, CentOS) or 

Windows (e.g., Windows 10, Windows Server) 

2. Programming Languages: 

1. Python (e.g., Python 3.8, Python 3.9) for 

machine learning and data processing 
2. R (e.g., R 4.0, R 4.1) for statistical analysis 

and data visualization 

3. JavaScript (e.g., Node.js) for web 

application development 

3. Machine Learning Libraries: 

1. scikit-learn (Python) for machine learning 

algorithms 

2. TensorFlow (Python) or PyTorch (Python) 

for deep learning 

3. caret (R) for machine learning algorithms 

4. Data Storage: 

1. Relational databases (e.g., MySQL, 
PostgreSQL) for structured data 

2. NoSQL databases (e.g., MongoDB, 

Cassandra) for unstructured data 

3. Data warehousing solutions (e.g., Amazon 

Redshift, Google BigQuery) for data 

analytics 

5. Data Visualization: 

1. Matplotlib (Python) or Seaborn (Python) 

for data visualization 

2. ggplot2 (R) or Shiny (R) for data 

visualization 

6. Web Development: 
1. Front-end frameworks (e.g., React, 

Angular, Vue.js) for web application 

development 

2. Back-end frameworks (e.g., Express.js, 

Django, Flask) for web application 

development 

7. Other Tools: 

1. Git (version control system) for 

collaborative development 

2. Jupyter Notebook (Python) or RStudio (R) 

for data exploration and prototyping 

Hardware Requirements: 
1. Server: 

1. CPU: Multi-core processor (e.g., Intel Core 

i7, AMD Ryzen 9) 

2. RAM: 16 GB or more 

3. Storage: 1 TB or more (SSD or HDD) 

2. Database Server: 

1. CPU: Multi-core processor (e.g., Intel Core 

i7, AMD Ryzen 9) 

2. RAM: 32 GB or more 

3. Storage: 2 TB or more (SSD or HDD) 

3. Data Storage: 
1. External hard drives or storage arrays for 

data storage 

4. Workstations: 

1. CPU: Multi-core processor (e.g., Intel Core 

i5, AMD Ryzen 5) 

2. RAM: 8 GB or more 

3. Storage: 512 GB or more (SSD or HDD) 

5. Other Hardware: 

1. Network devices (e.g., routers, switches) 

for network connectivity 

2. Security devices (e.g., firewalls, intrusion 
detection systems) for security 

V CONCLUSION 
A Hybrid Ensemble Model for Healthcare and 

Agriculture using Multiple Classifiers was developed to 

improve prediction accuracy in both domains. The model 

combined the strengths of multiple classifiers using a 

stacking ensemble method and achieved an accuracy of 95 % 



|| Volume 7 || Issue 07 || 2024 ||                                 ISO 3297:2007 Certified                                       ISSN (Online) 2456-3293 

29 

WWW.OAIJSE.COM 

in healthcare and 92 % in agriculture. The results showed that 

the hybrid ensemble model outperformed individual base 

models and provided insights into the importance of features 

and their relationships. The study has implications for 

improved decision-making and outcomes in healthcare and 
agriculture, and future work can extend the model to other 

domains, incorporate new features, and compare it with other 

machine learning models. 

 

VI FUTURE SCOPE 

a) Predicted Price Forecasting: Farmers can use the model to 

predict crop prices for the upcoming year. In the context of 

agriculture, predicted price forecasting using deep learning 

models is a valuable tool for farmers, enabling them to make 

informed decisions about crop production, marketing, and 

resource allocation. The application of ensemble 

multifeatured deep learning in this area has immense 
potential, as it allows farmers to anticipate market trends, 

optimize their crop selection, and plan their financial 

strategies based on predicted crop prices. 

b) Disease Diagnosis: The model can diagnose diseases using 

machine learning algorithms and medical imaging data. 

Disease diagnosis is one of the most critical applications of 

ensemble multifeatured deep learning models, enabling the 

medical community to detect diseases with higher accuracy 

and reliability. By leveraging the power of deep learning, 

medical data from multiple sources—such as medical images, 

patient history, genomics, and clinical reports—can be 
processed and analyzed to provide robust diagnostic results. 

This approach has the potential to significantly improve early 

disease detection, treatment planning, and patient outcomes, 

particularly in complex medical conditions where traditional 

diagnostic methods may fall short. 
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