
|| Volume 3 || Issue 7 || July 2018 ||                        ISO 3297:2007 Certified                                       ISSN (Online) 2456-3293 

                                                                                    
  

 
 

                                                                     WWW.OAIJSE.COM                                                           38 

DISCRIMINATIVE RELATIONAL TOPIC ANALYSIS AND ROLE 

DISCOVERY IN SOCIAL NETWORKS 

S. PUNITHAMARY
1
, S. NAGENDIRA

2
 

Asst. Professor, Department of Computer Applications, Idhaya College for Women, Sarugani, India 

Asst. Professor, Department of Computer Science, Idhaya College for Women, Sarugani, India 

------------------------------------------------------------------------------------------------------------ 

Abstract: Many knowledge sets may be described as a sequence of interactions between entities—for example 

communications between people in a very social network, protein-protein interactions or DNA-protein interactions in a 

very biological context, or vehicles’ journeys between cities. In these contexts, there is typically interest 

in creating predictions concerning future interactions, admire who can message whom. A preferred approach to network 

modeling in a very theorem context is to assume that the discovered interactions may be explained in terms of some latent 

structure. As an instance, traffic patterns may be explained by the scale and importance of cities, and social network 

interactions may be explained by the social teams and interests of people. Unfortunately, whereas elucidating this 

structure may be helpful, it typically doesn't directly translate into a good prophetical tool. Further, several existing 

approaches don't seem to be applicable for thin networks, a category that has several fascinating real-

world things. During this paper, we tend to develop models for thin networks that mix structure elucidation 

with prophetical performance. we tend to use a theorem statistic approach, that permits North American country to 

predict interactions with entities outside our coaching set, and permits the all the latent spatiality of the model and 

therefore the range of nodes within the network to grow in expectation as we tend to see a lot of knowledge. We tend 

to demonstrate that we are able to capture latent structure whereas maintaining prophetical power, and discuss do 

able extensions.  
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--------------------------------------------------------------------------------------------------------

 I INTRODUCTION 

We are frequently absorbed in describing and predicting 

the interactions between objects, be they characters within an 

organization, proteins within a cell, or transportation hubs 

within a region. We can signify these objects as nodes in a 

network, with the non-zero edges of the network describing 

the interactions between nodes. For example, we can 

characterize a social network as a binary network, where 

every node corresponds to a separate, and an edge between 

nodes corresponds to a friendship between individuals. 

Patterns of email communication can be modeled using an 

integer-valued network, with integer-valued edges 

representing the number of emails sent from one individual to 

additional. Interactions between proteins can be signified 

using a real-valued network, where the nodes correspond to 

proteins and the edges correspond to interaction strength. A 

number of statistical models for such networks have been 

planned. Numerous of these representations fall under the 

stochastic block model (SB) framework, where each node is 

supposed to belong to one of K latent groups, and the 

interaction between two nodes depends only on their group 

assignments. This basic model can be extended by permitting 

the number of latent collections to be unbounded, as in the 

infinite interpersonal model (IRM, Kemp et al., 2006), or by 

permitting each node to demonstration association in multiple 

latent groups, as in the mixed membership stochastic block 

model (MMSB, Airoldi et al., 2008). One thing that these 

models have in common is that they treat nodes as 

exchangeable, and assume that there exists a fixed, stationary 

network between these nodes. Every node is represented by 

the entirety of its interactions with other nodes, and we use 

this information to cluster (or, in the case of the MMSB, co-

cluster) the data into separate groups. 
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In this paper we follow a different approach: we 

treat the interactions, rather than the nodes, as data points, 

and construct an exchangeable sequence of directed binary 

links. Each link agrees to a single interaction—such as 

―friending‖ or ―liking‖ in a social network, or sending a 

single email—and is characterized in terms of an ordered pair 

of nodes. We may observe various links between two nodes; 

this corresponds to repeated interactions (for example, 

sending multiple emails).  

This method has a number of advantages. Unlike the 

stochastic block model family, the approach described in this 

paper allows us to model sparse graphs, where the number of 

non-zero entries grows as O(M), where M is the numeral of 

nodes. Sparsity is a property of many real-life networks, 

which tend to exhibit small-world behavior (Caron and Fox, 

2015; Orbanz and Roy, 2014).  

Additional advantage is that our model is openly 

considered for the prediction task. In numerous 

developments, we might be interested in what the next 

interaction will be: who will email whom, for example. 

Stochastic block representations aim to model a fully 

observed network, where the absence of an observed edge is 

interpreted as an explicitly observed zero. In this setting, any 

predictions necessity directly contradict these observed zeros. 

While it is possible to openly mark edges as ―missing‖, we 

can only do this for a small subset of unobserved edges—if 

we assume all zero edges in a stochastic block model are in 

fact unobserved, the maximum probability network will have 

all the edges equal to one. Equally, by assembling an integer-

valued network via an exchangeable sequence of links, we 

frame our problematic in a method that directly delivers a 

predictive distribution over the location of the next link, and 

allows us to continuously update our posterior predictive 

distribution in the face of new data. Further, by choosing to 

place a nonparametric distribution over the sequence of links, 

we can easily incorporate before unseen nodes, without any 

prior information of the number of such nodes. 

1.1 Notation  

We will use the notation Z to represent an M ×M 

network, with elements zsr ∈ N indicating the relationship 

between nodes s and r. If zsr ∈ {0, 1}, then a non-zero value 

indicates the presence of a relationship. If zsr is allowed to 

take on arbitrary non-negative integer values, we take this to 

indicate the number of interactions (for example, emails in a 

social network, packages in a computer network) between 

nodes s and r. Unless otherwise specified, we will assume Z 

to be a directed network, where Z 6= Z T . It will sometimes 

be more convenient to represent the matrix Z as a sequence of 

interactions Y = y1, y2, . . . , where each interaction yi 

consists of an ordered pair of nodes. We can reconstruct the 

matrix Z by setting zsr = P i I(yi = (s, r)), where I(·) 

represents an indicator function, that returns one iff the 

statement it refers to is true. 

1.2 Nonparametric Models for Networks 

 A stochastic block models assume a fixed, fully 

observed network, where zero-valued entries are taken to 

represent the observed absence of an interaction, and model 

the network by clustering these nodes. We take a different 

approach: We model a network as a sequence of observed 

interactions, and aim to predict the locations of future 

interactions by explicitly clustering the interactions, rather 

than the nodes. 

 To do so, we consider distributions over a sequence 

of links connecting a set of nodes. Each link, therefore, is 

associated with an (ordered) pair of nodes experimented from 

some distribution over such pairs; we may have numerous 

links associated with a given pair. To allow the network to 

expand over time, and to facilitate out-of-sample prediction, 

we let this set of nodes be countable infinite and use a 

Bayesian nonparametric distribution to assign probabilities to 

potential pairs. 

1.3 Dirichlet Network Distributions  

A simple way of constructing an integer-valued 

network with an unbounded number of nodes is to place a 

probability distribution G over a countable infinite number of 

actors. We can represent such a network as a sequence of 

(sender, receiver) pairs; each pair might, for example, 

correspond to a single email from a sender to a receiver, or a 

single journey between two cities. The value of a (directed) 

edge from a ―sender‖ s to a ―receiver‖ r is the number of 

times we have seen the pair (s, r). We call each individual 

pair in the sequence a link; the value of an edge between two 

nodes is the number of links between them. 

II COMPARISON METHODS 

We compare the mixture of Dirichlet network 

distributions to a single symmetric Dirichlet network 

distribution; to integer-valued variants of the mixed-

membership stochastic blockmodel (MMSB, Airoldi et al., 

2008) and the infinite relational model (IRM, Kemp et al., 

2006); and to two baseline methods.  

1. Symmetric Dirichlet network distribution 

  We modeled the data using a single symmetric DND 

as described in Section 3.1, with Dirichlet process 

concentration parameter τ = 1.  

2. Infinite relational model 

  Kemp et al. (2006) describe a variant of the IRM 

appropriate for integer-valued data. Each pair of clusters (i, j) 

is associated with a positive real-valued parameter θij , and 

the N links are assigned to clusters according to a 

multinomial distribution parameterized by the θij . Inference 

in this model is performed using existing C code released by 
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the authors of Kemp et al. (2006). This code was not able to 

handle the number of nodes present in the Enron data sets.  

3. Mixed-membership stochastic block model 

  While the MMSB is designed for binary-valued 

networks, it can trivially be extended to integer-valued 

networks by replacing the Bernoulli distributions with 

Poisson distributions, and placing gamma priors on the 

Poisson parameters. While, to the best of our knowledge, this 

extensions has not yet been explored in the literature, it is a 

natural, and easily implementable, extension. We perform 

inference in this model, with K = 50 clusters, using Gibbs 

sampling, via an existing R package (Chang, 2012) that was 

modified to replace the beta/Bernoulli pairs with 

gamma/Poisson pairs. Since inference in this model was 

significantly slower than inference in the IRM and the DNM, 

we only compared with the gamma/Poisson MMSB on our 

smallest data set. 

III CONCLUSION AND FUTURE WORK 

We have presented a new Bayesian nonparametric 

model, the mixture of Dirichlet network distributions, for 

integer-valued networks where the number of nodes is 

unbounded and grows in expectation with the number of 

binary links. This model allows us to capture sparse networks 

with latent structure. Existing network models focus either on 

latent structure—capturing the fact that each node will have a 

different pattern over which nodes it connects with—or on 

capturing sparsity; this is, to our knowledge, the first model 

that combines these two goals. Further, unlike most existing 

Bayesian network models, this model is explicitly designed 

for prediction. We can use the mixture of Dirichlet network 

distributions to obtain an explicit predictive distribution over 

the nodes associated with an as-yet unseen observation, even 

if we have not observed these nodes in our training set; we 

have shown good predictive and qualitative performance on a 

variety of data sets.  

The mixture of Dirichlet network distributions is 

based on a simpler network model that we refer to as a 

Dirichlet network distribution. In the symmetric setting—

where a common distribution is used for both senders and 

receivers—this corresponds to a special case of the integer-

valued network models of Caron and Fox (2015) and Crane 

and Dempsey (2016). While these models can be used to 

obtain desirable properties such as network sparsity and 

power law degree distribution, they are unable to capture 

community-type structure in the network. By using a mixture 

of these networks, we can capture multiple modalities of 

interaction between nodes; by using a nonparametric 

hierarchical framework we ensure that both the number of 

nodes is unbounded, and that nodes can interact as part of 

multiple clusters. The MDND therefore increases the 

modeling flexibility of this class of models, while retaining 

desirable sparsity properties.  

The mixture of Dirichlet network distributions is an 

exchangeable model: It is invariant to permutations of the 

order in which we observe links. While this is 

computationally appealing and leads to a straightforward 

predictive distribution, it does not allow us to capture 

network dynamics in integer-valued networks. In practice, 

such dynamics may be important: an individual’s level of 

activity within a topic may differ over time, and the overall 

acceptance of topics may change. A amount of authors have 

found that adding temporal dynamics to network models 

improves performance (Ishiguro et al., 2010; Xing et al., 

2010; Xu and Hero III, 2013). In the case of Dirichlet 

network distributions, similar temporal dynamics could be 

incorporated by replacing some or all of the component 

Dirichlet processes with dependent Dirichlet processes 

(MacEachern, 2000; Lin et al., 2010; Ren et al., 2008); we 

intend to explore this in a future work.  

In addition to the base model for integer-valued 

networks, we also deliberated extensions to binary networks. 

The methods considered comprise truncating the 

exchangeable integer valued network; while it is possible to 

achieve exchangeable binary networks related to those 

considered by Caron and Fox (2015) and Veitch and Roy 

(2015), we maintained that a dynamic truncation, yielding a 

non-exchangeable model, is additional appropriate for a 

temporally expanding binary network. Unfortunately, 

inference in such truncated models is trickier than the integer-

valued case. While we can analytically model the censored 

observations as auxiliary variables and recover the integer 

network, the amount of censored observations grows 

allowing to a coupon-collector problem with the number of 

observed links, making this method infeasible for large data 

sets. An interesting avenue for future research is to develop 

scalable inference methods for this setting. 
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