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Abstract: In present paper, comparison of First Order Shear Deformation Theory (FSDT) and simple FSDT on Nano
rectangular FG plate vibration analysis according to modified couple stress theory under moving load is developed.
Every theory has identical pattern. First, displacement fields and associated strains are introduced. Equations of motion
and boundary conditions are extracted from Hamilton’s principle and for studying of small scale effect; modified couple
stress theory is employed. Analytical solution for a simply supported Nano FG plate attained. Numerical examples are
presented in order to verification of the research accuracy. The results show that power law index and length scale
parameter have inverse effect on plate’s deflections, but same trends in frequency, although there are slight differences

between the theories at their amplitudes.
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I INTRODUCTION

Functionally Graded Materials (FGMs) are a sort of

composites which have continuous properties changing from
one surface to another, thus they can be employed for a
specific target. The prevalence of FGMs than typical
composites is elimination of stress concentration which is
emerging in laminated composites. FGMs are consisting of
metal and ceramic, isotropic and non-homogenous.
Utilization for specific stiffness and strength is because of
smooth and continuous FGM’s gradient. For the purpose of
FGMs response prediction, accurate models are needed; there
for shear deformation theories have been employed to take
response as a result of acceptable response to FG plates.
Owing to less complication and having valid results, FSDT
has dragged many attentions. By increasing of engineering
fields and attention to micro/nano structures, size dependent
methods should take into consideration. Classical plate
models are according to the classical continuum which could
not calculate of size effect, because it has lack of length scale
parameter, hence, size dependent models based on continuum
length dependent deployed. Among size dependent theories,
modified couple stress theory is more advantageous to the

others, because it has a length scale parameter[1], [2],
[3].There are many researches done based on theories which
are introduced. Van vu et al. investigated simple FSDT based
meshfree method for analyses of fg plates[4]. Jooybar et al.
researched thermal effect on free vibration of fg truncated
conical shell panel[5]. Reddy et al studied nonlinear finite
element analysis of FG circular plates with modified couple
stress theory[6]. Mirsalehi et al. studied the stability of thin
FG micro-plates subjected to mechanical and thermal loading
using modified couple stress and spline finite strip method[7].
Lei et al. studied A size dependent FG micro-plates model
incorporating higher order shear and normal deformation
effects based on a modified couple stress theory[8]. A simple
shear deformation theory for nonlocal beams developed by
Thai et.al[9]. Talha and Gupta investigated nonlinear flexural
and vibration response of geometrically imperfect gradient
plates using hyperbolic higher order shear and normal
deformation theory[10]. Senjanovic et al., studied, on new
first order shear deformation plate theories[11]. New first
order shear deformation beam theory with in plane shear
influence also investigated by Senjanovic et al[12].
Isogeometric locking free plate element: a simple first order
shear deformation theory for fg plates is done by Yin[13].
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Rohwer studied remark on a simple first order shear
deformation theory for laminated composite plates[14]. An
efficient and simple higher order shear and normal
deformation theory for functionally graded material plates
studied by Belabed et al[15]. Thai & Choi introduced a
simple first order shear deformation theory for laminated
composite plates[16]. A simple first order shear deformation
theory for bending and free vibration analysis of functionally
graded plates investigated by Thai and Choi[3]. Hence, the
aims is comparing of vibration analysis of Nano FG
rectangular plate based on FSDT and SFSDT under moving
load. Either methods has identical pattern. First part solved
based on FSDT and second’s by simple FSDT. Displacement
fields of each theory introduced as beginning one, then
Equations of motion and boundary conditions are obtained
from Hamilton’s principle and modified couple stress theory.
Analytical solution and numerical results for a simply
supported plate indicated to evaluate of the research
accuracy. Figure 1 shows the plate’s specifications.

x b

Figure 1: Geometry of FGM plate[17]
Section 1: FSDT relations
1. Displacement Fields
Displacement fields of FSDT can be written as [18]:

u(x,y,z,t)=u(x,yt)+z4,
u,(x,y,z,t)=v(x,y,t)+z4, D

ug(x,y,z,t)=w(x,y,t)
In Eq. (1), u, v, W, ¢X ,¢y are the unknown displacement

fields of the midplane of the plate.
are also defined as: 4 = 00 and 4 o0

X v oy
non zero strain equations based on FSDT are shown in

Eq.(2)[19]:

Ex T Bx 2
v Od,,
=, = + zZ
d Y% Y%
__ du v P, OP,,
Y=y T 5y o< 7 oV O
[SAAY
VY xz = Px = va
o
Vyz - (by —+ ay
e, =0
(2
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2. Curvature function

The curvature function according to rotation vectors are as
Eq.(3)[3]:

1 ( &0,
= O< ;
i,j=—1,2,3

D0,
O,

Xij —

: ®)
In Eq.(3), @ is rotation vector. Eq.(4) shows rotation vectors
using displacement fields are as[20]:

1( ou,; ou,
0, == S 1
2\ OX, OX,
1( ou ou
0, =5 o~ @
2\ OX; OX,
_1({du, ou
° 2lex,  ox,
Substituting Eq.(1) in Eq.(4), Eq.(5) exhibits rotation

vectors dependent upon displacement fields.

-3 4)
1 ow
ev:ﬂ‘*’x‘ﬁ]
_1(( 6u ov od, . OP
92—§(£—W+8—X]+Z{— dy +a—XyJ]
®)

Replacing of Eq.(5) in Eq.(3), Eq.(6) pointing out the
curvature functions in terms of displacement fields:

_1f°w _ 9%,
Yo =5 axoy  ox
_1(0¢, o°w
Lw =2\ 8y ~ oxoy
1(o*w  o*°w  dp, b,
Xxy = 2 2 + _
4( oy OX OX oy
1,8 u, 0%, 0%,
e =2l G "axay) T2 " axay)
1, v Py 0%, 0%,
=2 Gy 52 oy oy
_1{ 0, 09,
XZZ 2 ax ay

(6)
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3. Equations of Motion
Based on the Hamilton’s principle, the equations of motions
are as follows[20]:

}(su +8W —8K)dt =0 ™)

In which: sy : virtual strain energy: sw : virtual work
done by external force; and SK :
Virtual work defined as [21]:

SW= j F(x—X, (1))8(y -y, (1)) dAdw =
j F(X—X,)8(y —Y,) dAdw

Also, virtual kinetic energy can be calculated as[19] :
h/2

Sk = I J' p(z)(0,80, + 0,80, + Udu, )dAdz =

—h/2

virtual kinetic energy.

(®)

_[[ UBU + VOV + WW ) + | (ué‘xpX +, 00+ VS, + (pyé‘)v)]
A
[+1, (9,56, +¢,8¢, ) [dA

9)

Shear strain energy is take into consideration on the basis of
modified couple stress theory
as [22]:

U = [(o8e; + mdy;) dV (10)
\%

In Eq.(10): 0 j are Cartesian components of the stress tensor,

Sijare the strain components, mij are the components of

deviatoric part of symmetric couple stress tensor and Xij are

the components of the symmetric curvature tensor. By
replacing of related relations into shear strains energy,
Eq.(11) are attainable:

ouU = IGXSSX +0o,0¢, +0,8¢g, + 5,07, +0,,07,,
+Gy28yyz + mXSXXmeSXW +m,dy,, + 2mxy8Xxy
+2mx28sz + 2my28XyZ =8U = J-Gijseij + mi]SXij

0
=IGX8(8—U+26¢X)+Gy v by
oX oX oy

0
GXyS(ﬂ-l-a—u-l-Z %_{_&)
ox oy oy oXx
ow

ow
_X + d)x) + GyzS(q)y + E) +

2 a 2
Lo QW Oy Loy 5@ oWy,
2 Oyox  oX 2 oy oOxoy
2 2 a
lmXéS(aVZV—aV;I+a(|)"— ¢y)+
2 ¥ oy OX oxX oy
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2 2 62 2
+£mxzs o \2/ _a—u + Z _¢2y_ﬂ +
2 OX OXoy OX oxoy

1

2

lm 8[[ Y —62u]+z[az¢y _ 2%, ]]dAdz

2 oxoy  oy? oxay  oy?

_[Nx38u O, , 8v+ , oo,
OX OX oy oy

ov ow ou

S—+ N, ,d—+
> Ex +Qy oy oy

3O
Mxy m+i +Qx8%+
oy OX OX

owdw 8<I>y
OXoy ax

o8 P
P[0y OB, | B[ 59
2 OX oy 2 oy
sz(av8v audu

2 | ox?  axady
ny[aw5w owWdW O3, 68%]
D + _

2

Q,80¢, +—[

OW3SW +
OXoy

j+ Q,00¢p, +

oy? ox? )% ay

R,, [ 00,80, 0,8, , Ry 9P, 30, ¢, 3¢,
2 ox? OxXoy 2 oxoy oy?
N P,, [8v6v . 8u62u ]dA
2 | &xoy oy
(11)

Regarding the FSDT theory, stress resultants, mass inertia
and modified couple stress resultants of rectangular Nano FG
plate are defined as follows. In order to simplify Eq. (11), by
replacing of Egs. (12-15) into it:

h/2

l,= j p(z”)dz n=123 (12)
-h/2
h/2
N;,M; =o; I 1, z)dz, (13)
—h/2
i=XY,Xy
h/2 h/2
= J' zm;dz, Q; =k f c,dz (14)
—h/2 —h/2
j=xz,yz
h/2
P, = j m,dz (15)

—h/2

g=X,Y,XY,¥YzZ,XzZ

4. Governing Equations of Motion
Equations of motions are obtained by integration and
collecting coefficients of displacement fields

(du,8v, oW , 09, ,0¢, ) in Egs. (8-9-11) as shown in Eq.
(16 - 20):

N ’p
:6NX+Q_i_5 2 =1, U+, ¢, (16)

ox oy  20xdy 20y
ON, ON %P, 17
— xy+6PXZ+ b =1,V + 1,9, )

: +
oy  Ox  20x%  20xoy
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2 2 2,
ow: 2, 0 0P OB OBy OBy oy (18)
ox oy 2omoy 20xdy  20y°  20x
OM BP BPJ, aszz _ azRyz
*Tox 20y 20x 200y 20y° (19)
P, oM, .
7ﬁ+ (?)/":Ilu-¢—lzd>X
oM oP 2
39, : yntt’iQer;‘izX +§;’z 72XV+62?X22
oy X X 20y 20X (20)
82 y
Yo,
Yooyt ok iy

5. Constitutive equations of Nano FG plates
Constitutive equations of Nano FG plates are expressed by
Eg. (21)[23]:

E(2) = Ep+ (B~ Ep)(0.5+2)" 1)
P(@) =P+ (Pe —Pp)(©05+2)"
In Eq. (21): E,, metal elasticity modulus; Ec:ceramic

elasticity modulus; N : the power; P, p,: Metal and ceramic
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Substituting of Eq. (6) in Eq.(23), the deviatoric section
of modlfled couple stress is written as Eq. (25)

ow _0¢,
axay OX
1(o4  ow
2oy oxoy
1( 09, a@j
oA 25
e 25
" i |1 _dw o4 04,
4l oy? ox? ox oy
2, a 2
)
X< OXoy ax T ox
1(, 0% o ¢, &
Z[(a -—)+ ]
| Xoy oy ox oy

Taking the place of Egs.(24&25) into Egs. (12 -15), Stress
and modified couple stress resultants expressd as generalize
displacement:

N, = hJLZ o,dz :]I-E_(z) hj.z (5 +ve, )dz =

density, respectively. rectangular FG plate density and -hr2 U e
.. . . - - hi2
elasticity modulus are in accordance with varying thickness. Af [iuﬂ o, j”[av” %]dz (26)
Eqg. (22) describes constitutive linear elastic equations for AN OxX oy oy
rectangular FG Nano plate[17]: A “jz (auwavJ hi2 [ o9, a¢
o, | 1 v 00 0a] AT —h/z
o, v 100 Ofs h/2 h/2
E(z) N, = I o,dz =A J (sy +ve, )dz =
Oy | = 510 0 s 0 0f vy (22) -hi2 2 7)
1—\.) 0 O 0 O h/2 h/2 a¢ a¢
Oz S Vxz A .f (—+u )dz +B j (+ sz
o, 0 00 0 sjy, 2 Y R AN
- - - hi2 hi2
Where : N, = j 0,0z :A(l‘“j j (a" LA, (fw]d -
s=0-v)/2 -hr2 2 ) p\ 0% 0y ox oy 29)
Modified coupling stress is used to employ small-scale J“f[av Lo o ]dz
1 f\
parameter in equations. (| ) small-scale parameter is attained A0 Oy X0y
from the deviatoric section of modified couple stress (Eq. “f 5,202 =B “f [—+z o, jdz .
(23)) as [24]: B o\ 0 oxX
I’E 23 hi2
i =T(UZ) ’ ) o[ [av+ % ]dz = (29)
. . . - - - - -h/2 ay ay
Replacing strain equations (Eq. (2)) in linear elastic equation
o . . "lou  ov " (o, 04
of FGM (Eq.( 22)), constitutive equations are written as Eq.( B j (+u]dz +C J' [*+uyjdz
24): 2\ OX oy S OX oy
hi2 hi2 (7\/ u '\¢ A
. M, = [ o, =B j[ng iz +CJ H)Oaxﬂ ; (30)
£, giJrZ%x*)x -hi2 -hi2 G -hi2 oy !
hi2 hi2
_ov, 9%y M, =| o,zdz = 2E@) (6\/ au]dz
o cio0o0| 5 ! j v 20+0) J Y
Oy :1E_(i)2 00s 00 nyf%qu%Jrz[a;; +%J +h/222E(Z) w dz (31)
. 000s 0 i A+v) oxoy
Xz oW hl2
Gy, 0 000s sz=¢x+§ 2O au h2 ( Say
ow =U, (+]dz +2L [ ]dz
’sz:d)erW ~h/2 ox ay -h/2 ox ay
(24)
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o hj/_z o - ZE(iZJr )k) hjz (7 ¢X] replacing2 in Eqs.(16-20), as
h/sz'|/2 1Y h/2 (32) §U A[;+Uai2\/ ]+B[ZX¢ Uax¢ J
=0 I (%+¢XJdZ % 2
“ha\ OX ] ( Ry +62“J+2u ow
h/2 hi2 1 P 2 lﬁ
Q, = I o, dz :IZE(Z)k I [aw+¢yjdz X0y oy \ X%
“hi2 @+v) 7\ oy _B av _ au _
o (33) 3 s (41)
o '[2( ] oyox® oy ’ox
“hr2 [6(15 0, J_D( 3 _a“uJ
h/2 h/2 OX 2ox 2 4\ oxoy’ 4
P, = [ md IE(Z)I[ ¢]Z i‘yé’y4 oy oy
-h/2 2(1+0v) 5\ oxoy O (34) X o'g, _6¢ el ¢
:Dhlz[aQW _%jdz 4 3X6y3 ay 0
_np\OX0y  OX
h/2 hi2 o4 2w (WZA[a?Vz+U ou j+B[a¢§ +L)62¢x J
Py:Imydz:DJ'(ayx—axayj oy ox oy oy ox oy
~h/2 -h/2 (35) +‘]1(82V2+ o ]+2U1 azN
P—BJ/' & u ), ox? oxdy ox oy
" 2 ~h/2 axz aXay +B ﬂ_ aAu + a ¢ 64¢x (42)
X (0 o (36) 4\ ot ooy x* o’y
7 y X
2_,1,2[6x2 axay]d +D[ 82‘\/ . 64U3]+
D" v du aloxioy” oxoy
Pp =— [ _zjdz + X [ &' ) ..
I RACC R X AN Y
X 2 6hz/¢ 62¢ (37) 4[8)(26)/2 axﬁyiiJ V'+ ¢y
— Y~ \dz .
2_h,z[6x6y 8y2j S 23 [a¢ %}D( o __ 79, J
hi2 X M2 (g 2 ox oy 2| ox“oy Ox “oy
R, = _[ mdz =— | | —5— d 3 Ay
—hi2 2\ 0x"  oxoy D[ o¢g 0
NAC T (38) 2 | oxay? ox2oy?
+-L Y~ X |dz 3
2 hlz[ ox* axayJ +D[8‘\/\2_6;\N2_0¢§_ o, 2] (43)
X hi/2 82\/ azu 4 8y 6X ay ay axay
s oo _D[mﬂ_aﬂw_@% -MJ
g 2 62¢y 82¢ (39) 4| ox 26y2 ox* 5X28y ox 3
_1 _ X
h/z[axay " A[aQ ow %, +62W2J+ny = 1,W
. ) ox  ox* ooy oy
In Egs.(26-39), used variable are defined as follows:
A E(z) E(ZZ‘C:E(ZZ‘ 5¢X-B(au2+ N J+ a¢2 o9,
1-0° 1-v 1-v 0 ox oy oX 6x8y
E(z) I’E(z) 2
= X = , ow) D[ 0¢ g
|2§15+(; ; ZS(?)J) E@) (40) m{an T j+ 2 [f’y x oy* ]+
o) 200 T 20 ) D( ow _‘ﬁ”’a_az%_m]_
oy “ox  oX X OX oy
_E@k _I’E@) (44)

20+0)’ 2(1+v) x( v _a“J [6“¢y _a4¢x]_
6. Governing equations of motion in terms of aloxoy® oy') 4loxoy® o'
displacement Equations of motion in terms of x[ oV o' J Fl[ o', o', J
4

displacement are defined by using Egs.(26-39), and ox%y oylox?) 4lox‘y oy’
0? ow . "
X (aﬁ aXayzjzlluﬂﬁﬁx
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o9, 28[82\/2 +v ou j+C£a ¢§ +0 ¢, J
oy oX oy oy oX oy

Lw) Df dw ¢,
oy 2| ox%y ox*?
D%, |_

2| ox* oxoy

3{5% w2, 62¢J+
4

+2J1[6Qy

oy? oxy oxdy oy°

X[ ov  dh
4\ ox’oy? oxoy®
4
+5 a¢y _ a4¢x +
4| ox2y? oy ox
X(av __ou ) R[2% &'
4\ox* oyox®) 4| ox* oyox?®

=1V+1,4,

(45)
7. Boundary conditions:
Consider a simply supported Nano rectangular FG plate by
considering  length a, width b and thickness h, which is
imposed a moving load. Boundary conditions for the plate
indicated as fig(2):

/

¥y _

Figure 2. The geometry of a Nano rectangular FG
plate[25]

u(x,0)=u(x,b)=0
¢ (x,0)=¢, (x,b)=0
#,0,y)=¢,(a,y)=0

w(0,y) =w(a,y) =0
w (x,0)=w (x,b)=0

v(0,y)=v(ay)=0

. (46)
Dimensionless relations

Considering the following relations,
equations will be obtained [8].

the dimensionless
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(47)

8. Analytical Solution

Navier solution for simply supported nano rectangular FG
plate is employed to solve Nano FGM equations. according to
FSDT Eq.(48) is as follows [20]:

UK, Y.T) =3 3 U, cos(aX)sin(BY)e™

m=1n=1

V(X,Y,T) = ZZV sin(aX)cos(BY)e™” (48)

m=1n=1

W(X,Y,T) = mziwmn sin(aX)sin(BY)e™"

m=1n=1

0, (XY, T)= ZZX cos(oX)sin(BY)e"™"

m=1n=1

6, (XY, T) = ZZY sin(aX)cos(BY)e"™

m=1n=1

In Eq.(48), the parameters are as Eq.(49)[20]:

a:mandl «/TlandB:n_J (49)
a

oUN W, g ¢ are frequency and deflection field

coefficients of EQ.(48) in dual series of analytical
solution of the Navier. The double trigonometric series

for load is:
q(x,y)=2>.>Q,,sinaxsin gy
m=1ln=1 (50)
Where
4 ab
Qs :—”q(x,y)sin ax sin gy dxdy
ab 00
. (51)
In which
do for sinusoidal load
Lz for uniform load
g,mnrx (52)

Replacing Egs.(48&50) into dimensionless equations and
simplification, matrix form of equations are as:

(53)
sll s12 S13 Sl4 s15 IO 0 0 Il 0 Umn O
SZl SZZ SZS 524 S2'5 0 IO 0 Il Il erl 0
Sy Sp Su Sy Su|-00 O 1, 0 0 W,, |=|F,
S41 542 S43 344 S45 Il Il O IZ 0 an O
551 552 553 554 s55 0 Il 0 0 IZ Ymn 0
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S, =A0” +J,p°+ %BZ (® +1) + X,p?

S =A1U0L[3+Jn[3(x+%(a[33 +pa?)
S =U,ap
S, = Bja® + X,p? (cx2 +[32)
Sis = LaPB, — X, a’B + X,ap?
Sy = AlBZ ""]uAOL2 +%a2(a + [32)
Sy = U110~2[3
S, = Boap+ X, (ap®+pa?)
S, = Blﬁ2 +X1(a2[32 +a4)
Sy = 2L,a%p +2J;, (o +52)+%(3a232 +p°—a’ +p*)
S :2311a+&(2a[ﬂ2 +a)
2

Sy =21 B+&([33+20c2[3)

35 11 2

S, =Ba?+2J, +%(a2 +p7)+

%(BB“‘QZBZ)'F%BZ
F11 F11 3

S, = Boap + Dloc[3+?oc[33 T B

S =CB+Dj0” +2J, + %(QZBZ +a')

It should be noticed that some aforementioned variable
are:

h/2
A= [ Adz B, =2A,,C,=27A,,J,,
—h/2
h/2
= [ 34z ,U;, =23, =2V, (54)
—h/2
h/2 h/2
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N = [0 05,0V + [myz,dv
\% v

?, :_%, 9, :_% , S0 that the new simple

displacement fields can be rewritten[16]:

U6y, 2) =u(x,y)—z Mo
OX

U,06,y,2) =V (x,y) —z 2 (56)

oy
Ug(X,y,z)=w,(x,y)+w,(X,y)
The simple first order shear deformation theory
associated strains are:

ou _ ow,
& =—-—1
ox ox 2
_ov ow,
y T A, 6 2
oy y (57)
au v ow,
Vg = —+——21
oy ox OX oy
_ow, oW,
}/xz X yyz ay

12. Modified Couple Stress Theory

In order to strain energy extraction, modified couple
stress theory is used, which it has only one length
scale parameter. Regarding the theory, virtual strain
energy written as[1]:

The parameters of EQ.(58) already introduced in Eqg.(10).
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(58)

General function curvature form, based on rotation vectors

O,= [0dz,D, = [ Ddz X, present as follows[20]:

—h/2 —h/2

_ _ 1 T 1
=zD,,F, =zX, _= _= (59)
7 2[Vw+(Vw) } , @ 2V><u
Section 2: simple FSDT equations 2 = i( o6, , 99, J
11 - Displacement fields 2(ox;  Ox,
i,j =1,2,3

Conventional FSDT displacement fields are expressed
as [26]:

u(x,y,z,t)y=u(x,y,t)+z4,
U,(X,y,z,t)=v(x,y,t)+zg,

us(x,y,z,t)=w(x,y,t)

Where u, v and w are displacement alongside of x, y
and z coordinate directions of a point on the midplane
of the plate. By making further assumptions and
dividing transverse displacement w into bending and
shear parts (w=wp+ws ) the 5 unknown displacement
function of the midplane plate’s, reduced to 4
parameters. Shear normal vectors are defined as:

(55)

Curvature functions as displacement fields are[3]:

o :91:1[%_%]

2\ ox, ox, (60)
0, =0, = L[ M s

2\ ox, ©Ox,
0, —0, — L[ Mz _ Yy

2{ox, ©ox,

By replacing of displacement fields i.e., Eq.(56)
into Eq.(60), rotation vectors in terms of displacement
fields are rewritten as in Eq.(61).
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1( 20w, ow, he2
O =5l "t 8U=([ [ 0,0, +0,3, +0,0¢, +0,01, 40,37, + 6,8y, + M1,
oy oD i
g -1 ( 20w, , oW, j m 8y, +m,dx,, +2m, 8y, +2m,,8y,, +2m, 5y, )dAdz =
) =—Z
2 aX aX 8hj20[a_u_ZaZWbJ+ [@_282 ]
0, - (ﬁ _ G_UJ S e T oy oy
ox o _ _ o, ow,
Curvature function in terms of displacement fields are t0yy 5+&— 2z oxdy +
attained by replacing of Eq.(56) into Eq.(59) as:
267\N a?\NS p 8Ws i a\NS om E aZWb n GZWS
P =5 oxay T oxoy “loax ) "Lax ) 2\ oxoy  20xay
= [26%/\/ o, ] 1(ow, ow
Wy -m — +—= |+
2\ oxoy - oxoy 2\ axay " 20xdy
1 2a7wb+a?ws_a%/vs 20w, (62)
o4l ey?  oay? ax? ox?

1( 20w, . dw, 20w, o'w,
Xy 4 ayZ ayZ aXZ aXZ

1( ou o
Xxz ZZ - +72

axoy | ox 1 [az Gl j
2 +-m,| —- +
2 =1[_6UZ+ oy j 4 =\ o oyox
4\ oy® oxoy
2
13. Equations of motion lm ( o — 0 u2 ] =
Equations of motion derived from Hamilton’s 4 " ox oy oy
principle are defined as[25]: ou 67W ov
T (63) N 5— -M 5 +N 5— -
J(sU +ov —sK)dt OX ox’? oy
(o]
In which: SU are virtual strains energy, oW are y 82W +N 5£8u éﬂ]_
X
virtual work done by external force, OK are kinetic oy %
energy. OW Which is a moving load, assumed as oM S a2Wb +Q §5Ws
. Xy X 6X
[21]:
W = [F 8(x=x, (0)8(y —y,(0)dAdw = 40 oW, P (82\N oW j
64 y
[Fox-x,)3(y ~y,)dadw 9 2 Oxoy  20K0y
Kinetic energy can be obtained as[17]: P, é[ oW, + aQW—Sj
hi2 2\ oxoy 20xoy
SK = [ p(z)(u;8u, +U,0u, +udi,)dAdz 5 2u ox
ho e [_ayax ox? ]
:IIO(U5U+v'5\/+(Wb+WS)5(Wb +W,)) 5 5(262"% o, 20w, oW j
A Xy 4 z T 2S - 2 2S
oW, oW, oW, Sow, (65) al oy oyt ot ax
M v N - 1 ou o
ox OX o oy +—Py15(— L12+ J
oo, oW, o, .. oW, 4 oy*" oxoy
I,|u by —LbSU+V + oV
x X oy (66)
To simplify equation of 12, stress resultants are
Shear strains energy according to modified couple expressed  as: | = hj-z p(z")dz n=012
stress theory can be expressed as: -hr2

(67)
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h/2
R, = _[ zm,dz
—h/2

h/2 (68)
Q;, =k f o,dz
—h/2
i =xz,yz k=5/6
h/2
Nj = I 0‘jdz
—h/2
(69)
M ; = J. o-jZdZ
—h/2
J=x,y,xy
hi2
P = m, dz
‘ hj, ‘ (70)
K =X,Y,Xy,yz,xz

By replacing of Egs.(64-66) into Eq.(63), integrating by-
parts and then gathering coefficient of displacement fields
(su,dov,ow, 8w ) following equations are obtained.

. oN LS oN Xy _ 62sz _ azpyl =lu-=1 a\N.b
Tox oy doxey 4oyt Ot ax
oN oN 2 %P, V
Noi—L+ Xy+6P”2+ £ :I[J\/"—Ilawb
oy ox  40x° 4oyox oy
2 o*M o*M 2 %P
&NbZaM2X+ -2 Xy+1 6PX+ Uy
X oy ayox 2\ axoy  oyox

1( &P, o&°P, I
2[ ﬁx); a ayzyjﬂ:w =1 (W, +w, )+

|1[<3LI+6V]_IZV;\N,b
ox oy

0 2 %P
Q, X, & P

: X +
S oy 4doyox 4oy ox

1(e’P, P, L
2( 8y2y - 8xy2 J+ny =1, (W, +w,)

14. Constitutive Nano FG relations
Regard a FG plate as shown in fig.(1), the material
properties of the plate such as Young’s modulus, mass

density, are presumed varying through the thickness by
power law as[27]:

(71)

E(z):Em+(EC—Em)(o.5+%)n (72)

P(2) = pn + (0, —pm)(o.5+%)"

EQ.(72) elements are as FSDT, which is already
presented. The linear constitutive relations of FG plate are:

O_x 1 1% O O O gx
o, E() v 1 0 0 0f¢
z
T 0 0 s 0 0|y, (73)
oy, 0 00 s O Yz
o, 0 00 0 s Yy
Where
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s=0Q-v)/2

Material length scale parameter which is considered as a
material property measuring the effect of modified couple
stress expressed[24]:
_1?E(2)
B
Substituting of Eqgs.(57 and 62) into Eqgs.(73 and 74)

generalized linear constitutive equations can be written as
Eqgs.(75&76).

(74)

ij

ou o ow,
-z

£
T Xl

_E@)

1-0°

&
|
o O o C B+
o O O ~— C
o O v o o
o v o o o
»w O O o o

(75)

| _1if20%w, ow, |
Zxx_ axay axay

) za?w L oW,
Yo =75 axay | oxdy

1’E (2) 26Mb ow, ow, 20w,
= == + - -
Y4 oy? oy’ ox° ox?

_1fov _ ou
Yo =3 o axay
v _ou
K axay o
(76)

Replacing of Eqs.(75 and 76) into Eqs.(67-70), stress
resultants rewritten as displacement fields that are stated as
bellows:

NX:E( )hf(:—::— %}u(%—zi\y—fjdz

. Al
55

[ ]dz‘( aij (78

5 [a%/v a?wbj
oy ox?

2
1_0 -2
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_E@) hy2 (w o 8Mbjdz The parameters which are Aforementioned are:
Xy 2(:I.+u)7hl2 oy ox 0y Ox (79) A= hf E(Z)d B - hj'z E(Z) 7dz
—C 87U+ﬂ _9D 52Wb el v el v?
—¥1 ay aX 1 ayax hj} E(Z) h/2 ZE(Z)
) 1
M _E(Z)mz[é’V_ 0w, jwz(au a?wb]dz :;222(1“)) h/22(1+v)
-0,y T e x oyl D,- | ;Ii(z)dz . N,=B,, (88)
N [8\/ +Uau] T (azwb +Uazwb] h/nzlz 1+v) I
SNy T T 2 2 E 24 E
o e et e e,
(80) -h/2
hi2
M, = E (Zz 7 [a_u_z a?""zb}, Equations of motion in terms of displacement were
1-0" 4, \ox Ox obtained by replacing of Eqgs.(77-87) into Eqgs.(71), as
ov ow, 4z =N ou  ov shown in coming equations:
Pl Ty )T Ty (81) R w, oW
5u:[A1[+ j [ 2+ zbj]
ow, o, x: o oyox ox oy “ox
-1y 2 TV
" 5 as )
1 2 a 1 za
M. = E@) hlzz[a—u ﬂ—za%/vb}i a);“u aya‘\/ aya‘\)/( o'
Xy —
2( )hlz ay ay aXay (82) 3[46x26y2 48y6x3+46y38x+46y4j
_plou, v [ow, A (89)
oy oax ) ooy N
i du ow ow
hi2 hi2 2 o A, ov. ]_Bl( b b D
= [ ma=[ 2 s )(m T jz [ (o o5y
hi2 i 2+v)\ dyox oy ox o 82\/ W
+[C1[ D—ZD1 62*’ +
U 20w, \ ow, (83) yox o’ ox %oy (90)
layax 20yx oAy v oy
b o2 *\doxPey  4oxt doyPox? 4oy ox
I’E(z)( 20w, EEZWS "
P, = j m,dz =- dz =1y -1, %%
“hi2 i 2+ 0){ oy ox 6y6X
=U [267\"") o ] e M, %U [2;way +86T215'Sy2+2;NyZJ
V3
oyox 20y o S, oy o)
he "C1’E (@) 20w, 20w, oW, oW Tayt a2
P:meydz=J Tt |l = A o,
—h/2 _h/24(1+l)) oy ox oy ox Clax72+ 18y =1, W, +w,)
, a?W*;—aZ\Nnga?W;—a?W; (& v ow, oW,
28y 20X 48}/ 40x aNb'Nl F+U6X26y -T ox +8x28y2
y y (85) N [63\/ L, 0 J T[ ow, oW, J
2 2 3 2
PXZ=JmXZdZ—jIE()67V o " ay®  oxoy axé'y R
_hi2 h/24(1+U) ox’ 6y6x D[ o . oV ]—h 8‘\Nb .
A o (86) loxoy? oxPoy ) “oxoy?
= 35[8)(2 aanJ sow, . 3w, ow, ow, oW, oW,
*\ 20x %0y ?  4ox2oy? say 4ay Teoxt 4okt
hi2 h/ZI E( ) 62\/ au a .
P,= | m,d= -— |dz Z 16, +W A N gy
vz _ﬁ'./z yz ﬁ[/24(1+0) xoy ay +Fy Io(Wb+Ws)+|1(ax+ayj IZV?\Nb
T @7 : (92)
~ %2l ooy oy?
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Boundary conditions and dimensionless equations for
SFSDT also stated as FSDT, which are already
represented.
15. Analytical solution

Consider a simply supported FG plate with
length a width b and thickness h under moving load, as in
fig.(1). Solution based on Navier approach can be
represented as[17]:

UX Y T)=3SU,, cos(@X )sin(s Je'"

m=1n=1

VXY T)=3SV. sin(@X )cos(Ar Je'
5. o o

W, (XY T) =S SW,,, sin(aX )sin(B Je'

m=1ln=1

WX Y T)=3 SW,, sin(aX )sin(4r )e'™"

m=1ln=1

Where:i:\/i,azm,ﬁ:%ﬂ,umn,v W, W are

mnthmn?  smn
a

coefficients, and @ is the frequency of free vibration.
By replacing of EQs.(50&93) into EQs.(89-92), the
analytical solution can be expressed:

Sll 512 Sl3 Sl4 mll m12 m13 m14 U mn O
521 SZZ 323 s24 _a)z m21 m22 m23 m24 an — 0
S31 S32 S33 S34 m3l m32 m33 m34 Wbmn ny
S41 S42 S43 S44 m41 m42 m43 m44 Wsmn FXY

Where
s =A@’ +C B +h,(a’B* - ')
s, =Awaf+C,ap+h, (a*f-05ap°)
s;;=-B,(a’ +ap’)+D,ap’
S,y =0=5, (94)
S, =A S +C.a +%(2a" +a2ﬁ2)
Sy =-B,S° —B,vpa’ +2D,a°B
s =-U,(a' +p* +20° ) -
h,a® —%(Gazﬂz +a' +,B")

h
54 =C,(a’ +/32)+31(4a2/32 +a'+p)
my =1y =my, =m, =my,

My =-al;,my = |o+|z(a2+ﬁ2)rmzs =1,p
I1 DISCUSSION AND RESULTS

As mentioned in open literature, no research have
been done applying modified couple stress theory to
investigate vibration of Nano rectangular FG plate under
moving load based on FSDT and SFSDT, so that the research
evaluated with those were homogenous. This part divided
into 2 sections; first studied the effects of power law index
and length parameter scales on deflections and then on
frequencies. Figure 3 shows the dimensionless deflection of
Nano rectangular FG plate with different power law index
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and constant length scale parameters using FSDT. It is
cleared by increasing of power law index, deflections also
raised. Fig 6 indicate the plate’s deflections in SFSDT as
same as fig 3 conditions. The figure also has the identical
trend like fig3. The reason of increasing deflection is,
because metal purity increased than to ceramic, bending
stiffness of elasticity module dropped which is led to more
flexibility and eventually plate’s deflection increased. Figure
4 indicates the dimensionless deflection of Nano rectangular
FG plate by constant power law index and various length
scale parameters in FSDT, fig 5 which is done based on
SFSDT also has the fig 4 conditions. In figs 4&5 by
enhancing of length scale parameters, plate’s deflection
reduced because with increasing of length scale parameters
flexibility diminished so that the plate’s deflection decreased.
Either of next two branches figures, i.e. figs7&8(done
regarding to FSDT) and figs9&10 (by considering SFSDT)
express deflection of Nano rectangular FG plate during the
time. It is noticeable that assumed load moves along x
direction over the centerline of FG plate by a constant

velocity V, (X =V t), also traveling time of the moving

and k=5/6, so the T which is

load defined as { _ &
f VO

showed represented as: _ t [21]. Figures of 8 and 9

tf

shows deflection of the plate with constant power law index
and different length scale parameters throughout the time,
these images reveals that by increasing of length scale
parameters deflections diminished, owing to dropping of
bending stiffness of elasticity module. But the figs 7 &10
which power law indexes are varying, by rising of the factor,
deflection raised, due to decreasing of flexibility. Figures 11
and 12 are according to FSDT and figs 13&14 represented
SFSDT. Figures 11 to 14 probes the power law index and
length scale parameters on frequencies, as can seen from the
figures by increasing each of two factors, frequencies
reduced. This might be because of small width of plate in
Nano structure which is so significant and present such a
trend.

T

111 CONCLUSION

Comparison of vibration analysis of Nano
rectangular FG plate applying to modified couple stress
theory under moving load based on FSDT and SFSDT are
developed. First, displacement fields are defined. Equations
of motion derived from Hamilton’s principle. Boundary
conditions and analytical solution are stated for a simply
supported Nano rectangular FG plate. FG properties vary
through thickness. In order to investigation of small scale
effects, modified couple stress is used which has one length
scale parameter. Results show with power law index
increasing, deflection escalated and rising of length scale
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parameter, deflection reduced, and these factors have same

effects on frequencies. The research indicated that there is

dimensionless deflection
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Figure 9. Dimensionless deflection with constant power law
index (n=1) and different length scale parameter under
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