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Abstract: Economic Load Dispatch (ELD) is a critical optimisation problem in power system operation that aims to minimise total
fuel cost while satisfying system demand and generator operating constraints. The presence of valve-point loading effects makes
the ELD problem highly non-linear and non-convex, limiting the effectiveness of conventional optimisation methods. This paper
proposes a hybrid optimisation approach that integrates Differential Evolution (DE) and Teaching–Learning-Based Optimization
(TLBO) to enhance solution quality and convergence performance.
In the proposed DE–TLBO framework, DE is employed during the initial phase to perform global exploration of the search space,
while TLBO is used in the later phase to intensify local exploitation and refine candidate solutions. A repair-based constraint
handling strategy is incorporated to ensure strict satisfaction of generator limits and power balance constraints at every iteration.
The effectiveness of the proposed approach is evaluated using the IEEE-40 generating unit test system under identical simulation
conditions.
Simulation results demonstrate that the proposed DE–TLBO hybrid algorithm achieves lower fuel cost and improved convergence
characteristics compared to standalone DE and TLBO algorithms. The findings confirm that hybrid metaheuristic optimisation
provides a robust and efficient solution for large-scale, non-convex economic load dispatch problems.
Keywords: Economic Load Dispatch; Differential Evolution; Teaching–Learning-Based Optimization; Hybrid Metaheuristic
Optimization; Valve-Point Loading Effect; IEEE-40 Generating Unit System
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I. INTRODUCTION

Economic Load Dispatch (ELD) is a fundamental optimisation
problem in power system operation that aims to determine the
optimal power output of generating units such that the total fuel
cost is minimised while satisfying system demand and operational
constraints [1], [2]. Efficient solution of the ELD problem is
essential for achieving economical and reliable power system
operation, particularly in large-scale thermal power systems.

In practical power systems, generator fuel cost characteristics are
highly nonlinear due to valve-point loading effects, which arise
from the sequential opening of steam admission valves in thermal
units. These effects introduce ripples in the fuel cost curve,
making the ELD problem non-convex and non-smooth [3], [4].
Under such conditions, conventional optimisation methods such
as lambda-iteration, gradient-based techniques, and dynamic
programming become inadequate, as they rely on convexity and
differentiability assumptions and often converge to local optima
[2], [5].

To address these challenges, a wide range of metaheuristic
optimisation algorithms have been proposed, including Genetic
Algorithms, Particle Swarm Optimization, Differential Evolution
(DE), and Teaching–Learning-Based Optimization (TLBO) [6]–
[9]. These algorithms are population-based and stochastic in

nature, enabling effective exploration of complex search spaces
without requiring gradient information. Among them, Differential
Evolution has been widely applied to ELD problems due to its
strong global search capability and simple control structure [10].
However, DE may exhibit slow convergence during later
iterations because of limited local exploitation capability.

Teaching–Learning-Based Optimization is another effective
metaheuristic inspired by the teaching–learning process in a
classroom. TLBO is characterised by its parameter-light structure
and efficient exploitation behaviour, which often results in faster
convergence compared to other population-based algorithms [11],
[12]. Nevertheless, when applied independently to large-scale
ELD problems, TLBO may suffer from reduced exploration
capability and premature convergence.

To overcome the limitations of standalone metaheuristic
algorithms, hybrid optimisation approaches have been
increasingly explored in recent studies. Hybrid methods aim to
combine the complementary strengths of different algorithms to
improve convergence behaviour, robustness, and solution quality
for non-convex ELD problems [13], [14]. In this context,
integrating the global exploration ability of DE with the local
refinement efficiency of TLBO presents a promising strategy for
large-scale economic load dispatch.
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Motivated by these observations, this paper proposes a hybrid
Differential Evolution and Teaching–Learning-Based
Optimization (DE–TLBO) algorithm for solving large-scale, non-
convex Economic Load Dispatch problems. The proposed
approach employs DE in the initial phase to explore the search
space effectively and switches to TLBO in the later phase to
refine candidate solutions.

II.RELATED WORK .

The Economic Load Dispatch (ELD) problem has been
extensively investigated over the past several decades, and a wide
range of solution techniques have been proposed. Early research
focused primarily on conventional optimisation methods, which
were developed under simplified assumptions of convex and
smooth generator fuel cost functions. Classical techniques such as
lambda-iteration and gradient-based methods provided fast and
reliable solutions for small-scale systems; however, their
applicability was limited when realistic generator characteristics
were considered [1], [2].

The inclusion of valve-point loading effects and other practical
constraints transformed the ELD problem into a highly non-
convex optimisation task. Under such conditions, conventional
approaches were found to suffer from premature convergence and
poor solution quality [3], [4]. This limitation motivated the
adoption of metaheuristic optimisation algorithms, which are
capable of handling nonlinear and non-smooth objective functions
without relying on gradient information.

Genetic Algorithms (GA) were among the first metaheuristic
techniques applied to ELD problems and demonstrated improved
performance for non-convex formulations [5]. Subsequently,
Particle Swarm Optimization (PSO) gained significant attention
due to its simplicity and fast convergence characteristics. Several
studies reported successful application of PSO to ELD problems
with valve-point effects and practical constraints [6], [7].
However, PSO often requires careful parameter tuning and may
converge prematurely in large-scale systems.

Differential Evolution (DE) has emerged as a powerful
evolutionary optimisation technique for continuous problems. Its
strong global exploration capability and simple control
parameters make it suitable for solving large-scale ELD problems
[8], [9]. Various DE-based approaches have been reported to
achieve competitive fuel cost values for non-convex ELD
formulations. Nevertheless, DE may exhibit slow convergence
during later iterations due to limited exploitation capability [10].

Teaching–Learning-Based Optimization (TLBO) is a relatively
recent metaheuristic algorithm that has attracted attention due to
its parameter-light structure and ease of implementation. TLBO
has been successfully applied to ELD and related power system
optimisation problems, often achieving faster convergence
compared to parameter-sensitive algorithms [11], [12]. Despite
these advantages, standalone TLBO may experience reduced
exploration capability when applied to high-dimensional ELD
problems.

III.PROBLEM STATEMENT

The Economic Load Dispatch (ELD) problem is formulated as a
constrained optimisation problem whose objective is to minimise
the total fuel cost of thermal generating units while satisfying
system demand and operational constraints [1], [2].

3.1 Objective Function

For a power system comprising N thermal generating units, the
total fuel cost is expressed as:

min⁡F=
i=1

N

Fi� (Pi)

where the fuel cost function of the i-th generator is modelled as a
quadratic function with valve-point loading effect:

Fi(Pi)=aiPi
2+biPi+ci+∣eisin⁡ fi(Pi,min⁡−Pi) ∣

Here, Pidenotes the power output of the i-th generator (MW), ai ,
bi , and ci are fuel cost coefficients, and ei and fi represent valve-
point loading coefficients. The inclusion of the sinusoidal term
introduces non-smoothness and non-convexity in the objective
function, making the ELD problem more challenging to solve
using classical optimisation methods [3], [4].

3.2 Equality Constraint

The total generated power must satisfy the system load demand.
This requirement is expressed by the power balance constraint:

i=1

N

Pi� =PD

where PD is the total system load demand (MW). In this study,
transmission losses are neglected to focus on algorithmic
performance, which is a common assumption in benchmark ELD
studies [6], [8].

3.3 Inequality Constraints

Each generating unit must operate within its specified minimum
and maximum power limits:

Pi,min⁡≤Pi≤Pi,max⁡,i=1,2,…,N
These constraints ensure safe and reliable operation of the
generating units.

IV PROPOSED DE -TLBO Hybrid Optimization Method

This section presents the proposed hybrid Differential Evolution
and Teaching–Learning-Based Optimization (DE–TLBO)
approach developed to solve the non-convex Economic Load
Dispatch (ELD) problem. The hybrid framework is designed to
combine the complementary strengths of Differential Evolution
(DE) and Teaching–Learning-Based Optimization (TLBO) to
improve convergence behaviour and solution quality for large-
scale ELD problems.

4.1 Differential Evolution Overview

Differential Evolution is a population-based evolutionary
optimisation algorithm that operates through mutation, crossover,
and selection mechanisms. Owing to its strong global exploration
capability and simple control parameters, DE has been widely
applied to continuous optimisation problems, including non-
convex ELD formulations [8], [9]. In DE, candidate solutions are
iteratively evolved by perturbing existing solutions using scaled
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vector differences, enabling effective exploration of the search
space. However, DE may experience slow convergence during
later iterations due to limited local exploitation capability [10].

4.2 Teaching–Learning-Based Optimization Overview

Teaching–Learning-Based Optimization is a population-based
metaheuristic inspired by the teaching–learning process in a
classroom environment. TLBO operates through two sequential
phases, namely the teacher phase and the learner phase, which
aim to improve the mean performance of the population and
promote knowledge sharing among individuals [11], [12]. TLBO
is characterised by its parameter-light structure and efficient
exploitation capability, often resulting in faster convergence.
Nevertheless, when applied independently to large-scale problems,
TLBO may suffer from reduced exploration and premature
convergence.

4.3 Hybridization Strategy

To overcome the limitations of standalone DE and TLBO
algorithms, a sequential hybridisation strategy is adopted in this
work. In the proposed DE–TLBO framework, the optimisation
process is divided into two distinct stages:

1. Exploration Stage:

Differential Evolution is employed during the initial phase of the
optimisation process to explore the search space extensively and
identify promising regions. The mutation and crossover
operations help maintain population diversity and avoid
premature convergence.

2. Exploitation Stage:

After a predefined switching iteration, the population is
transferred to the TLBO framework. The teacher and learner
phases are then used to intensify local search and refine candidate
solutions around high-quality regions.

The transition from DE to TLBO ensures a balanced trade-off
between exploration and exploitation, which is critical for solving
large-scale non-convex ELD problems.

4.4 Constraint Handling Mechanism

A repair-based constraint handling strategy is integrated into both
stages of the hybrid algorithm to ensure the feasibility of
candidate solutions. After each update, generator operating limits
are enforced by boundary correction, and power balance is
satisfied through redistribution of generation among units. This
approach avoids the need for penalty parameter tuning and
ensures strict compliance with system constraints throughout the
optimisation process [6], [14].

4.5 Advantages of the Proposed Hybrid Approach

The proposed DE–TLBO hybrid optimisation method offers
several advantages:

 Improved convergence characteristics compared to
standalone algorithms

 Enhanced balance between global exploration and local
exploitation

 Robust performance for large-scale, non-convex ELD

problems

 Reduced sensitivity to algorithm-specific parameter
tuning

These advantages are validated through simulation studies
conducted on the IEEE-40 generating unit test system, as
discussed in the following section.

Figure 1 Flowchart of the proposed DE–TLBO hybrid
optimization algorithm

V.SIMULATION SETUP AND RESULT

5.1 Simulation Setup

The performance of the proposed DE–TLBO hybrid optimisation
algorithm is evaluated using the IEEE-40 generating unit test
system, which is widely adopted in the literature for validating
large-scale Economic Load Dispatch (ELD) solutions. The test
system consists of 40 thermal generating units supplying a fixed
load demand. Each generator is characterised by a quadratic fuel
cost function with valve-point loading effects, making the
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optimisation problem non-convex and highly nonlinear.

All simulations were carried out using MATLAB under identical
operating conditions for fair comparison. The same population
size, maximum number of iterations, initial population generation
method, and constraint handling strategy were applied to
Differential Evolution (DE), Teaching–Learning-Based
Optimization (TLBO), and the proposed DE–TLBO hybrid
algorithm. Transmission losses were neglected to focus on the
optimisation capability of the algorithms, which is a common
assumption in benchmark ELD studies.

The primary performance metrics used for evaluation include
total fuel cost, convergence characteristics, generator dispatch
profile, constraint satisfaction, and computational time.

5.2 Results and Discussion

Table 1: Results of ELD for IEEE 40 generating units

Methods Fuel Cost ($/Hr)

DE 77040.8668

TLDO 77223.7200

DE-TLDO hybrid 75464.2075

Table 1 compares the minimum fuel cost obtained for the IEEE-
40 generating unit system using DE, TLDO, and the proposed
DE–TLDO hybrid algorithm. The results indicate that both DE
and TLDO achieve comparable fuel costs, reflecting similar
optimisation performance when applied individually. In contrast,
the proposed hybrid algorithm attains a lower fuel cost,
demonstrating improved economic performance. This reduction
confirms that combining the exploration capability of DE with the
exploitation strength of TLDO enhances solution quality for
large-scale economic load dispatch problems.

Figure 2 Convergence Characteristics of DE, TLBO, and DE–
TLBO Hybrid for IEEE-40 Unit System

Figure 2 illustrates the convergence behaviour of Differential
Evolution (DE), Teaching–Learning-Based Optimization (TLBO),
and the proposed DE–TLBO hybrid algorithm for the IEEE-40
generating unit system. It can be observed that all algorithms
converge towards feasible solutions; however, the convergence
paths differ significantly. DE exhibits a steady but relatively
slower convergence, while TLBO shows faster initial

improvement followed by early stagnation. In contrast, the
proposed DE–TLBO hybrid demonstrates both rapid early
exploration and improved refinement in later iterations, resulting
in a lower final fuel cost. This behaviour confirms the
effectiveness of combining DE-based exploration with TLBO-
based exploitation.

VI.CONCLUSION

This paper presented a hybrid Differential Evolution and
Teaching–Learning-Based Optimization (DE–TLBO) approach
for solving the non-convex Economic Load Dispatch (ELD)
problem considering valve-point loading effects. The ELD
problem was formulated as a constrained optimisation task, and a
repair-based constraint handling mechanism was employed to
ensure strict satisfaction of generator operating limits and power
balance requirements.

The proposed hybrid framework integrates the strong global
exploration capability of Differential Evolution with the efficient
local exploitation behaviour of Teaching–Learning-Based
Optimization. By adopting a sequential hybridisation strategy, the
algorithm effectively balances exploration and exploitation during
different phases of the optimisation process.

Simulation studies conducted on the IEEE-40 generating unit
system demonstrate that the proposed DE–TLBO hybrid
algorithm achieves improved convergence characteristics and
lower total fuel cost compared to standalone DE and TLBO
algorithms under identical operating conditions. The hybrid
approach consistently produces feasible dispatch solutions with
negligible power balance error and acceptable computational
effort.

The results confirm that hybrid metaheuristic optimisation
provides a robust and efficient solution for large-scale, non-
convex economic load dispatch problems. The proposed DE–
TLBO framework can serve as a reliable optimisation tool for
practical power system operation and offers a strong foundation
for further research in advanced economic dispatch applications.
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