

OPEN ACCESS INTERNATIONAL JOURNAL OF SCIENCE & ENGINEERING

Solar Powered Agriculture Monitoring Robot Using Raspberry Pi

Kummara Nandini¹, Nithin Kumar Y S¹, Agavinti Naveen¹, Mithun Hegde R¹, Jyothi H R

¹UG scholar, Dept. of Electronics and Communication Engineering, R L Jalappa Institute of Technology, Doddaballapur, Affiliated to VTU Belagavi, India

knandininandu28@gmail.com, nithinkumar8259@gmail.com, Agavintinaveen31@gmail.com, mithunnayak4u@gmail.com, jyothi.hr050@gmail.com

²Assistant Professor, Department of Electronics and Communication Engineering
R L Jalappa Institute of Technology, Doddaballapur, Affiliated to VTU Belagavi, India

Abstract: The solar-powered agriculture monitoring robot, on Raspberry Pi 3 as the control unit, revolutionizes precision farming by integrating renewable energy with multi-sensor IoT architecture for real-time field monitoring. This autonomous system, as depicted in the block diagram, harnesses a solar panel and battery power supply to drive all operations sustainably, eliminating grid dependency and enabling deployment in remote farmlands prevalent in regions like Karnataka, India.

Key components include environmental sensors interfaced with the Raspberry Pi: capacitive soil moisture sensor v1.2 for irrigation optimization, DS18B20 waterproof temperature sensor for soil temperature, DHT22 for air temperature and humidity, BH1750/TSL2561 for light intensity, and analog pH sensor for soil acidity detection. An image/picture capture module (likely Pi Camera) facilitates visual crop health analysis, while a 3.2" LCD screen displays live data and alerts. Mobility is powered by DC motors (M1 and M2) controlled via a motor driver, supporting navigation across uneven terrain with implied obstacle avoidance.

The Raspberry Pi processes sensor inputs using Python-based scripts for data fusion, thresholding algorithms, and machine learning models (e.g., OpenCV for pest detection). Wireless connectivity—via built-in Wi-Fi or optional GSM—transmits analytics to a farmer's app or cloud dashboard, triggering automated responses like sprinkler activation for low moisture (<30%) or nutrient dosing for suboptimal pH (ideal 6.0-7.0). Energy management optimizes solar charging, yielding 10-12 hours of runtime under partial shade, with low-power modes extending battery life.

Keywords: Autonomous navigation, Real-time monitoring, IoT data transmission, Precision farming, Renewable energy, Sensor fusion, Wireless alerts.

I. INTRODUCTION

1.1 Introduction to Solar-Powered Agriculture Monitoring Robots

Agriculture is the backbone of many economies around the world, particularly in developing countries where a large portion of the population relies on farming for their livelihood. As the global population continues to grow, the demand for food production is increasing at an unprecedented rate. This has created an urgent need for innovative and efficient methods of farming that can increase yield, reduce waste, and make optimal use of natural resources. In this context, technology-driven approaches such as smart farming and precision agriculture are playing an increasingly important role. One of the promising innovations in this domain is the use of autonomous monitoring systems that leverage renewable energy and embedded computing platforms to collect and analyze data from agricultural fields. This project focuses on the development of a solar-powered agriculture monitoring robot using Raspberry Pi, aimed at enhancing productivity and sustainability in farming practices.

Traditional farming methods heavily rely on manual monitoring of crop and soil conditions, which can be labor-intensive, time-

consuming, and prone to human error. Farmers often face challenges in accessing real-time information about critical environmental parameters such as soil moisture, temperature, humidity, and sunlight, all of which have a direct impact on crop health and yield. Furthermore, in remote or rural areas, the availability of electricity to power monitoring systems is often limited or unreliable. These challenges underline the importance of developing autonomous, energy-efficient, and cost-effective monitoring solutions that can operate in off-grid agricultural environments.

1.2 Key Components and Functionality

A solar-powered agriculture monitoring robot is typically comprised of several integrated systems working in concert. At its core lies a Raspberry Pi, serving as the central processing unit. This miniature computer is responsible for controlling various sensors, processing collected data, and managing communication. The robot's power source is a solar panel, which charges a battery, ensuring continuous operation even during periods of low sunlight or at night. A crucial aspect of its functionality involves various sensors designed to monitor critical environmental parameters. These commonly include soil moisture sensors to

prevent over or under-watering, temperature and humidity sensors to assess microclimates, and pH sensors to gauge soil acidity. Some advanced robots may also incorporate cameras for visual analysis of crop health, pest detection, or growth tracking.

1.3 Operational Advantages and Benefits

The adoption of solar-powered agriculture monitoring robots offers a multitude of advantages for farmers. The primary benefit is their autonomous and continuous operation, reducing the need for constant human supervision and enabling round-the-clock data collection. This continuous monitoring leads to optimized resource utilization, particularly water, as irrigation can be precisely controlled based on real-time soil moisture levels. By providing early detection of issues like nutrient deficiencies, pest infestations, or disease outbreaks, these robots contribute to improved crop health and yield. Furthermore, their reliance on renewable solar energy makes them an environmentally friendly and sustainable solution, reducing operational costs associated with traditional power sources. Ultimately, these robots empower farmers with data-driven decision-making, leading to more efficient, productive, and sustainable agricultural practices.

1.4 Core Components and Operational Mechanism

A typical solar-powered agriculture monitoring robot integrates several key technologies to achieve its objectives. The Raspberry Pi acts as the robot's brain, orchestrating sensor readings, processing information, and managing communication protocols. Power is supplied by a solar panel system, which efficiently converts sunlight into electricity to charge onboard batteries, ensuring uninterrupted functionality day and night. The robot's intelligence is further enhanced by an array of environmental sensors, which are vital for data collection. These commonly include sensors for soil moisture, ambient temperature, humidity, and soil pH, providing comprehensive data on the growing conditions. Some advanced configurations may also incorporate cameras for visual inspection of plant health, growth patterns, or early detection of pests and diseases.

1.5 Advantages and Impact on Agriculture

The deployment of solar-powered agriculture monitoring robots offers significant advantages for contemporary farming. Their autonomous nature and continuous data collection capabilities drastically reduce the need for manual checks, freeing up valuable human labor. This constant vigilance facilitates precise resource management, particularly in terms of water and nutrients, leading to reduced waste and lower operational costs. By providing immediate feedback on plant conditions and environmental stressors, these robots enable proactive interventions, ultimately contributing to healthier crops and increased yields. Furthermore, their reliance on clean, renewable solar energy aligns perfectly with sustainable agricultural goals, minimizing the environmental footprint of farming operations. These robots represent a significant step towards intelligent, efficient.

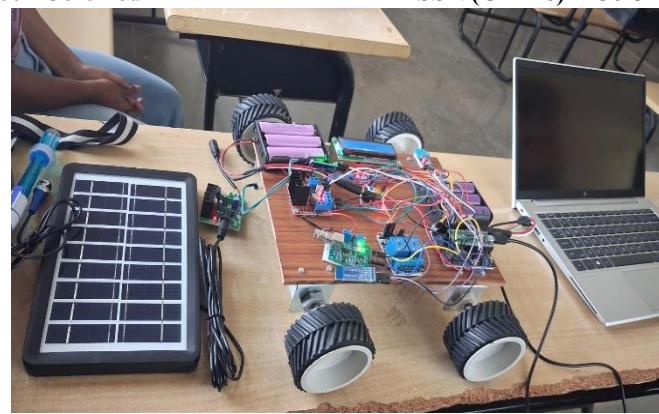


Figure.1: solar powered agriculture robot agriculture robot using raspberry pi

In Figure.1 The solar powered agriculture monitoring robot in the image is a four-wheel mobile platform that uses a Raspberry Pi as its central controller and a small solar panel to recharge an onboard lithium-ion battery pack. The robot is designed to move through agricultural fields, measure environmental parameters such as soil moisture and temperature, and display or transmit this data for analysis, helping farmers monitor crop conditions more efficiently. A laptop is connected for programming and real-time debugging, allowing the developer to upload code, view sensor readings, and manually test motion and monitoring functions during development.

The robot shown is a solar-assisted, battery-powered, four-wheel agricultural monitoring platform built around a Raspberry Pi controller, intended to move across farmland and continuously collect field data. The Raspberry Pi runs Python programs that read various sensors, control the DC motors via driver circuits, and coordinate tasks such as movement, data logging, and communication with an external laptop or network. A small photovoltaic panel charges the 18650 lithium-ion battery pack through a charge-controller circuit, extending runtime in outdoor conditions and showcasing the use of renewable energy for precision agriculture applications.

On the sensing side, the robot typically carries soil-moisture probes, temperature and humidity sensors, and possibly light or gas sensors, so that it can report key agronomic variables that affect plant growth and irrigation scheduling. These sensor readings are displayed locally on the 16x2 LCD module so that a farmer in the field can immediately see values such as soil moisture percentage, temperature, or battery voltage without needing an additional device. At the same time, the Raspberry Pi can store readings with timestamps in files or databases and send them wirelessly to a remote server or smartphone, enabling long-term analysis, decision support, and record keeping for smart-farming practices.

2 . Literature Survey

The documents you attached mainly review recent research related to solar-powered robots, renewable-energy systems, and

smart agriculture technologies, plus a few works on advanced robotics and energy management more broadly. They describe how solar energy, wireless sensor networks, edge AI, and power-management strategies are being combined to make agricultural monitoring and robotic systems more autonomous, energy-efficient, and suitable for remote deployment. Several papers focus directly on solar-powered agricultural robots and Raspberry Pi/embedded-controller platforms for tasks like soil monitoring, irrigation, seed sowing, and obstacle-avoiding field navigation, while others cover supporting technologies such as solar-wind hybrids, smart IoT energy management in homes, AI-based pest detection on edge devices, and model-based power management for farm sensor networks.

Across the literature, common technical themes include: using solar panels (sometimes with wind or other harvesters) and optimized storage/charging electronics to supply stable off-grid power; applying wireless sensor networks and IoT for continuous measurement of soil moisture, temperature, humidity and other parameters; integrating AI/ML on embedded or edge platforms for tasks like pest recognition, predictive energy management, and autonomous navigation; and developing algorithms or mechanical designs to extend system lifetime, such as energy-aware routing in sensor networks, hybrid flight or aerial manipulators for solar-farm inspection and cleaning, and careful study of how robotic cleaning affects PV coatings. Collectively, these works show that future agricultural and solar-energy robots will depend on tight integration of mechatronics, power electronics, communication, and intelligent software to deliver reliable, low-maintenance operation in harsh, data-intensive.

Another set of documents discusses how to design optimal renewable-energy supplies that could power homes, farms, or robots and sensor networks. A solar-wind hybrid system study proposes methods for selecting the best combination of PV panels, wind turbines, and batteries to meet household loads reliably, using modeling to size components and evaluate costs and reliability metrics such as energy balance and loss of power supply probability. Other work introduces underwater characterization of amorphous and monocrystalline solar cells to see how they behave in different water conditions, using encapsulation materials like PDMS to protect cells and measuring performance changes in various salinities and depths; these concepts could apply to powering submerged sensors or marine platforms. There are also papers on mitigating short-term fluctuations in wind power output using time-series analysis, smoothing algorithms, and ramp-rate limits, aiming for stable integration of high shares of renewables into the grid—important context when many farms or robots depend on variable solar and wind energy.

Several articles focus on powering and managing networks of distributed sensors for smart agriculture using solar or harvested energy. A “Novel Distributed CDS Algorithm” for solar-harvesting wireless sensor networks in agriculture selects a minimal set of active backbone nodes based on their energy levels, forming a connected dominating set that reduces redundant communication and prolongs network lifetime even

when solar input is intermittent.

2.1 Problem Statement

Traditional agricultural practices often use water and nutrients inefficiently because of manual monitoring and fixed irrigation schedules, causing over-watering, wastage, and nutrient runoff that harm soil and water quality. Without real-time field data, farmers cannot precisely match inputs to crop needs, increasing costs and environmental impact.

2.2 Objectives

The solar-powered agriculture monitoring robot aims to use resources efficiently by precisely tracking soil moisture, temperature, humidity, and soil pH so that inputs are applied only when needed. It also seeks to improve crop health and maximize yield by continuously collecting and analyzing data to detect stress or growth issues at an early stage.

3 Methodology of implementation.

1. Problem definition and requirements

Begin by defining exactly what the robot must do in your field context. For example, “autonomous soil-moisture and temperature monitoring with manual tele-operation,” or “monitoring plus spot irrigation

2. System architecture and block diagram

Next, design a high-level architecture showing how power, control, sensing, and communication are organized around the Raspberry Pi. A typical block diagram will have these main blocks: solar panel and charge controller feeding a battery bank; DC-DC converters generating 5 V and 12 V rails; Raspberry Pi as the main controller; motor-driver modules for wheel motors and pumps; sensor suite (soil-moisture, temperature-humidity, maybe pH and camera); local user interface (LCD, LEDs, buttons, buzzer); and communication interfaces such as Wi-Fi, Bluetooth, or GSM.

3. Power-system design

Then, size and design the solar and storage subsystem to meet the robot’s energy demand. Estimate average current draw of the Raspberry Pi, motor drivers, sensors, and any pumps, and use that to compute Wh per hour of operation. Choose a solar panel and battery (for example, Li-ion 18650 cells in 3S or 4S) that can run the robot for the target number of hours and recharge within typical sunlight duration. Integrate a suitable solar charge controller and step-down converters to provide regulated 5 V for the Raspberry.

4. Mechanical structure and drive train

After the power architecture is clear, design the robot chassis and locomotion system. Decide between a four-wheel differential drive platform or tracked system based on soil conditions and obstacles. Select geared DC motors that provide enough torque for the loaded robot on farm soil, considering wheel diameter and target speed.

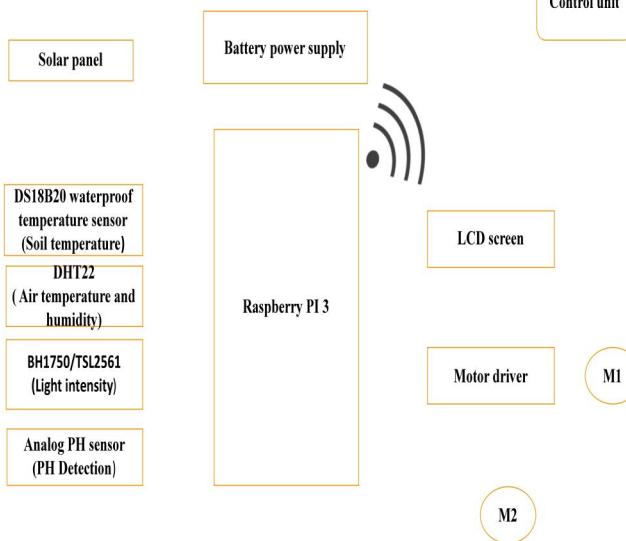


Figure-3: Block diagram of proposed system.

In above figure.3 shows the system is a solar-powered smart agriculture setup built around a Raspberry Pi 3 as the main controller. A solar panel feeds a battery power supply, which provides regulated DC power to the Raspberry Pi, sensors, LCD screen, wireless module, and motor driver so the unit can work in the field without mains electricity. The Raspberry Pi runs software that periodically reads all sensor values, compares them with preset thresholds or control algorithms, logs data, and decides when to activate irrigation motors or send information to the remote control unit.

On the sensing side, several environmental parameters are monitored to understand both soil and atmospheric conditions around the crops. A capacitive soil moisture sensor v1.2 is inserted into the soil and outputs an analog voltage that varies with the water content; because it uses capacitive technology and corrosion-resistant materials, it lasts longer than simple resistive probes and therefore suits long-term field deployment. A waterproof DS18B20 digital temperature sensor is buried near the roots to measure soil temperature, while a DHT22 sensor measures air temperature and humidity above the soil, allowing the system to assess how quickly water will evaporate and how comfortable the micro-climate is for plants. In addition, a BH1750 or TSL2561 light sensor on the surface measures light intensity in lux over an I²C interface, providing data about sunlight exposure and time of day, which can be used to schedule irrigation when evaporation losses are lower. An analog pH sensor with a conditioning board and ADC measures how acidic or alkaline the soil or irrigation water is, giving early information about nutrient availability or harmful conditions so that fertilizer and lime application can be adjusted.

On the output and user-interface side, the Raspberry Pi sends processed data to a local LCD screen so that a farmer standing near the unit can see soil moisture, temperatures, humidity, light level, pH, motor status, and possibly battery level in real time. For actuation, GPIO pins from the Raspberry Pi connect to a motor driver circuit that can safely switch higher-current DC motors

while protecting the Pi's low-voltage electronics. The two labeled motors, M1 and M2, are typically small pumps or valve actuators that control water flow to different parts of the field; when soil moisture drops below a defined threshold or when other conditions demand irrigation, the Pi enables the motor driver, which powers the appropriate motor until adequate moisture is restored. Finally, a wireless link (using Wi-Fi or another radio module) connects the Raspberry Pi to a remote control unit such as a smartphone app, PC, or cloud server, enabling remote monitoring of all sensor readings, storage of historical data, alerts for abnormal values, and manual or automatic adjustment of thresholds and irrigation schedules from anywhere with network access.

4 Hardware and Software Used

Hardware, the power section contains a solar panel and a battery power supply, which together provide stable DC power to the Raspberry Pi 3, sensors, LCD, and motor driver so the system can work in a farm field without mains electricity. The sensing section uses a capacitive soil moisture sensor v1.2 for soil water content (via an external analog-to-digital converter like MCP3008 or MCP3002), a waterproof DS18B20 digital temperature sensor for soil temperature, a DHT22 sensor for air temperature and humidity, a BH1750 or TSL2561 digital light sensor for light intensity, and an analog pH sensor with a small conditioning board and ADC to read soil or water pH. The output and actuation hardware includes a character LCD (often a 16×2 or 20×4 display, usually connected over I²C), a motor-driver board or relay module that can switch higher-current DC loads, and two motors (M1 and M2) that typically drive water pumps or valves for different irrigation zones; a wireless interface (onboard Wi-Fi or an external module) links the Raspberry Pi to a remote control unit such as a phone, PC, or cloud server.

For the software side, the Raspberry Pi generally runs Raspberry Pi OS (a Debian-based Linux) from a microSD card, providing drivers and networking for Wi-Fi communication and access to GPIO, I²C, SPI, and 1-Wire interfaces used by the sensors and motor driver. The main application is usually written in Python and uses libraries such as RPi.GPIO or gpiozero for digital I/O, spidev or similar for SPI-connected ADCs that read the capacitive moisture and pH sensors, the w1thermsensor library for DS18B20 soil temperature, Adafruit_DHT for the DHT22 humidity/temperature sensor, and smbus or other I²C libraries for BH1750/TSL2561 and the I²C LCD. This Python program runs in a loop, periodically reading all sensors, applying calibration and threshold logic (for example, turning pumps on when soil moisture is below a set percentage), driving the motor-driver pins accordingly, updating the LCD with current values and system status, logging readings to local files or a database, and exchanging data or commands over HTTP/MQTT or a custom API with the remote control unit for monitoring and manual overrides.

5 Results

Temperature, Humidity, Light Intensity

The below figure 4 shows the output of the solar powered agriculture robot using raspberry pi

Temprature:23c

Humidity:76.3%

Light intensity: Day

Figure 4

Figure 4: temperature, humidity, light intensity day.

The setup in the image is an embedded electronics project that measures environmental conditions and shows them on a character LCD screen. The project appears to monitor temperature, humidity, and ambient light level, giving a simple “day” or “night” indication based on the light sensor’s reading.

The display is a 16x2 character LCD module with a blue backlight and light-colored characters, commonly driven by an HD44780-compatible controller. On the first line it shows temperature and humidity as “T:23C H:76.3%”, and on the second line it shows “Light: Day”, which indicates that it is bright enough for the system to classify the environment as daytime.

Behind and above the LCD there are small circuit boards that likely contain the sensors and power electronics. One visible module has a blue trimmer potentiometer and two red LEDs, which suggests it is a digital sensor or comparator board (often used with photoresistors or IR sensors) whose output is read by the microcontroller that sends the values to the LCD.

The below figure shows the output of

Temprature:23c

Humidity :76.3%

Light intensity: Night

Figure 5: temperature, humidity, light intensity night.

The above figure 5. shows the new image again shows the same environmental monitoring project using a 16x2 LCD to display temperature, humidity, and light conditions. The hardware layout appears unchanged from the previous photo: the LCD is mounted at the front, and the small sensor or comparator module with a blue potentiometer and red LED is positioned behind it, connected by jumper wires.

On the LCD, the first line still reads “T:23C H:76.3%”, meaning the temperature and humidity values are the same as before. The second line now shows “Light: Night”, which indicates that the ambient light level has dropped below the threshold set on the sensor module, so the system classifies the environment as nighttime.

In both images, the first row of the LCD reads “T:23C H:76.3%”, which means the temperature is 23 °C and the relative humidity is 76.3%, likely coming from a digital temperature-humidity sensor such as a DHT11, DHT22, or similar device connected to a microcontroller. The microcontroller continually reads the sensor data and refreshes the LCD so that any environmental change would appear immediately on the screen.

The key difference between the two photos is on the second line, where one image shows “Light: Day” and the other shows “Light: Night”. This indicates that the project includes a light-detection circuit—probably an LDR (light-dependent resistor) or photodiode module—whose output is compared to a threshold: when illumination is above the threshold, the software prints “Day”; when it falls below, it prints “Night”.

Soil Moisture

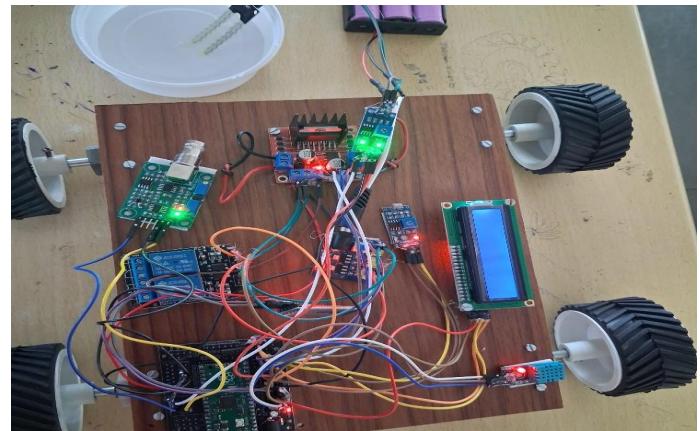


Figure 6: soil moisture.

The above figure 6 shows the soil moisture is a smart irrigation or environmental monitoring robot built on an Arduino-based mobile platform. The wooden base carries four DC motors with wheels, allowing the system to move around while collecting data from different sensors and controlling actuators. A 16x2 LCD on the right side is used to display values like soil moisture, temperature, humidity, and system status so that the user can see conditions in real time.

At the heart of the system is an Arduino-compatible microcontroller board, which reads sensor values and decides

when to drive the motors or switch other devices on or off. The central red PCB with the black heat sink is an L298N motor driver module that receives low-power control signals from the Arduino and delivers higher current to the DC motors so the vehicle can move forward, backward, or turn. A relay module on the left side allows the Arduino to switch higher-power loads such as a water pump or valve, which is typical in automatic irrigation projects.

The project includes a soil moisture sensor, whose fork-like probe is placed in water (or soil) to measure how much water is present. This sensor works by measuring the electrical resistance between its two metal probes: wet soil conducts electricity better and has lower resistance, while dry soil has higher resistance. The module converts this resistance into an electrical signal that the Arduino reads, letting the system decide whether the soil is dry and needs watering.

A DHT11 temperature and humidity sensor is mounted near the front edge of the board to measure surrounding air conditions. It sends digital data about temperature and relative humidity over a single data line, which the Arduino processes and can show on the LCD along with soil moisture values. Monitoring both soil moisture and air climate helps in designing smarter irrigation logic, for example, avoiding watering when humidity is already very high or when conditions suggest low evaporation.

PH Sensor

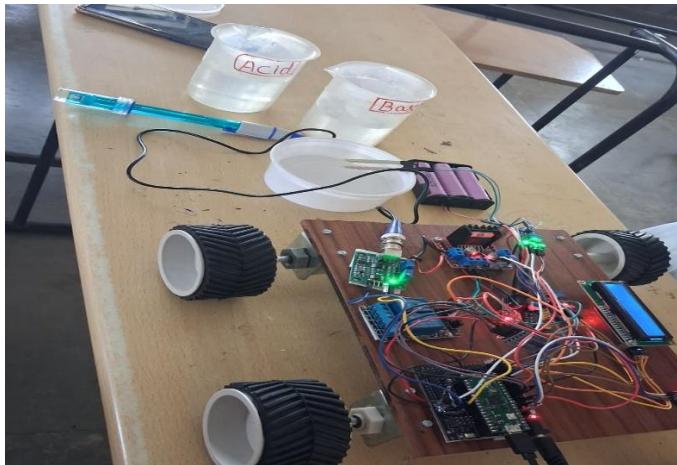


Figure-7: PH Sensor.

The above figure.7 shows the extra component of a pH sensor probe connected to the same Arduino robot platform, and it is being used to measure how acidic or basic different liquids are in the cups marked "Acid" and "Base". A typical Arduino pH sensor kit consists of a glass pH probe (with a BNC connector) and a small signal-conditioning module; the probe is dipped into the solution, and the module connects to one of the Arduino's analog input pins, while a 16x2 LCD (like the one on your robot) displays the measured pH value in real time.

Inside the probe, a special glass membrane reacts with hydrogen ions in the liquid, creating a tiny voltage that depends on the liquid's pH; acidic solutions ($\text{pH} < 7$) and basic solutions ($\text{pH} > 7$) produce different potentials according to the Nernst equation. The

pH module amplifies and filters this millivolt-level signal and outputs a more stable analog voltage that the Arduino can read and convert into a numeric pH value using a calibration formula in the code.

Your two labeled cups provide a simple demonstration: when the probe is placed in the "Acid" cup, the Arduino should calculate a pH somewhere below 7 and show that on the LCD, while placing it in the "Base" cup should give a value above 7. By driving LEDs, relays, or even the movement of the robot based on that pH value, the project can simulate water-quality checking, chemical monitoring, or automatic response to unsafe conditions—for example, stopping near an "acidic" area or triggering an alert.

To get accurate readings, pH sensors need calibration using standard buffer solutions, typically at pH 4, 7, and 10, and the calibration constants are stored in the Arduino sketch so the raw analog values map correctly to true pH values. The sensor should also be kept moist when not in use and rinsed with distilled water between measurements, because the glass electrode's performance degrades if it dries out or gets contaminated by residues from previous test solutions.

6 Conclusion

The solar-powered agriculture monitoring robot using Raspberry Pi demonstrates an effective integration of sensing, computation, and renewable energy to address key limitations of traditional farming. By continuously measuring soil moisture, temperature, humidity, and pH, it enables data-driven decisions that optimize irrigation and nutrient application, reducing waste and operational costs. Early detection of crop stress or abnormal field conditions supports timely interventions, helping to improve plant health and maximize yield while minimizing excessive use of water, fertilizers. Powered by solar energy, the system operates autonomously in remote fields with minimal human supervision, lowering dependence on grid electricity and contributing to more sustainable, low-carbon agricultural practices. Overall, the robot provides a scalable, smart-farming solution that enhances productivity and environmental stewardship, aligning agriculture with modern precision and sustainability goals.

7 References

- [1] B. R. Jerosheja and C. Mythili, "Solar Powered Automated Multi-Tasking Agricultural Robot," 2020 International Conference on Innovative Trends in Information Technology (ICITIIT), Kottayam, India, 2020, pp. 1-5, doi: 10.1109/ICITIIT49094.2020.9071542.
- [2] T. Pehlivanova and A. Atanasov, "Selection of Optimal Configuration for Autonomous Solar-Wind Hybrid System for Household Consumption," 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Ruse, Bulgaria, 2020, pp. 1-4, doi: 10.1109/EEAE49144.2020.9279017.
- [3] F. Rafath, S. Rana, S. Z. Ahmed, Juveria, R. Begum and N. Sultana, "Obstacle Detecting Multifunctional AGRIBOT Driven By Solar Power," 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184), Tirunelveli, India,

2020, pp. 196-201, doi: 10.1109/ICOEI48184.2020.9142983.

[4] O. Gulec, E. Haytaoglu and S. Tokat, "A Novel Distributed CDS Algorithm for Extending Lifetime of WSNs With Solar Energy Harvester Nodes for Smart Agriculture Applications," in *IEEE Access*, vol. 8, pp. 58859-58873, 2020, doi: 10.1109/ACCESS.2020.2983112.

[5] P. K. Enaganti, P. K. Dwivedi, R. Sudha, A. K. Srivastava and S. Goel, "Underwater Characterization and Monitoring of Amorphous and Monocrystalline Solar Cells in Diverse Water Settings," in *IEEE Sensors Journal*, vol. 20, no. 5, pp. 2730-2737, 1 March 2020, doi: 10.1109/JSEN.2019.2952428.

[6] A. Albanese, M. Nardello and D. Brunelli, "Automated Pest Detection With DNN on the Edge for Precision Agriculture," in *IEEE Journal on Emerging and Selected Topics in Circuits and Systems*, vol. 11, no. 3, pp. 458-467, Sept. 2021, doi: 10.1109/JETCAS.2021.3101740.

[7] M. Sibtain *et al.*, "A Multistage Hybrid Model ICEEMDAN-SE-VMD-RDGP for a Multivariate Solar Irradiance Forecasting," in *IEEE Access*, vol. 9, pp. 37334-37363, 2021, doi: 10.1109/ACCESS.2021.3062764.

[8] C. Tipantuña and X. Hesselbach, "IoT-Enabled Proposal for Adaptive Self-Powered Renewable Energy Management in Home Systems," in *IEEE Access*, vol. 9, pp. 64808-64827, 2021, doi: 10.1109/ACCESS.2021.3073638.

[9] F. Tauzessss Zohora Saima, M. Tamanna Tabassum, T. Islam Talukder, F. Hassan, P. K. Sarkar and S. Howlader, "Advanced Solar Powered Multipurpose Agricultural Robot," 2022 3rd International Conference for Emerging Technology (INCET), Belgaum, India, 2022, pp. 1-6, doi: 10.1109/INCET54531.2022.9824561.

[10] Y. Liu, D. Li, B. Du, L. Shu and G. Han, "Rethinking Sustainable Sensing in Agricultural Internet of Things: From Power Supply Perspective," in *IEEE Wireless Communications*, vol. 29, no. 4, pp. 102-109, August 2022, doi: 10.1109/MWC.004.2100426.

[11] F. Corti, A. Laudani, G. M. Lozito, A. Reatti, A. Bartolini and L. Ciani, "Model-Based Power Management for Smart Farming Wireless Sensor Networks," in *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 69, no. 5, pp. 2235-2245, May 2022, doi: 10.1109/TCSI.2022.3143698.

[12] C. T. Urabe, T. Ikegami and K. Ogimoto, "Mitigation of Short-Term Fluctuations in Wind Power Output in a Balancing Area on the Road Toward 100% Renewable Energy," in *IEEE Access*, vol. 10, pp. 111210-111220, 2022, doi: 10.1109/ACCESS.2022.3215740

[13] F. Corti, A. Laudani, G. M. Lozito, A. Reatti, A. Bartolini and L. Ciani, "Model-Based Power Management for Smart Farming Wireless Sensor Networks," in *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 69, no. 5, pp. 2235-2245, May 2022, doi: 10.1109/TCSI.2022.3143698..

[14] Y. Hu, W. Guo and R. Lin, "An Investigation on the Effect of Actuation Pattern on the Power Consumption of Legged

Robots for Extraterrestrial Exploration," in *IEEE Transactions on Robotics*, vol. 39, no. 2, pp. 923-940, April 2023, doi: 10.1109/TRO.2022.3206665.

[15] L. -B. Chen, X. -R. Huang, W. -H. Chen, W. -Y. Pai, G. -Z. Huang and W. -C. Wang, "Design and Implementation of an Artificial Intelligence of Things-Based Autonomous Mobile Robot System for Cleaning Garbage," in *IEEE Sensors Journal*, vol. 23, no. 8, pp. 8909-8922, 15 April 15, 2023, doi: 10.1109/JSEN.2023.3254902.

[16] M. Alkaddour *et al.*, "Novel Design of Lightweight Aerial Manipulator for Solar Panel Cleaning Applications," in *IEEE Access*, vol. 11, pp. 111178-111199, 2023, doi: 10.1109/ACCESS.2023.3321859

[17] D. Gayango, R. Salmoral, H. Romero, J. M. Carmona, A. Suarez and A. Ollero, "Benchmark Evaluation of Hybrid Fixed-Flapping Wing Aerial Robot With Autopilot Architecture for Autonomous Outdoor Flight Operations," in *IEEE Robotics and Automation Letters*, vol. 8, no. 7, pp. 4243-4250, July 2023, doi: 10.1109/LRA.2023.3280753.

[18] M. M. De Benedetti, L. Bascetta, A. Falsone and M. Prandini, "Automated Photovoltaic Power Plant Inspection via Unmanned Vehicles," in *IEEE Transactions on Control Systems Technology*, vol. 32, no. 2, pp. 399-412, March 2024, doi: 10.1109/TCST.2023.3316093.

[19] M. Alkaddour *et al.*, "Novel Design of Lightweight Aerial Manipulator for Solar Panel Cleaning Applications," in *IEEE Access*, vol. 11, pp. 111178-111199, 2023, doi: 10.1109/ACCESS.2023.3321859.

[20] B. Figgis *et al.*, "Abrasion of PV Antireflective Coatings by Robot Cleaning," in *IEEE Journal of Photovoltaics*, vol. 14, no. 5, pp. 824-829, Sept. 2024, doi: 10.1109/JPHOTOV.2024.3414192

[22] B. Figgis *et al.*, "Abrasion of PV Antireflective Coatings by Robot Cleaning," in *IEEE Journal of Photovoltaics*, vol. 14, no. 5, pp. 824-829, Sept. 2024, doi: 10.1109/JPHOTOV.2024.3414192.

[23] E. Mendez-Flores, D. Morales and M. Egerstedt, "V-Model Based Integration of Mechatronics and Power Electronics for a Solar-Powered Wire-Traversing Robot," in *IEEE Access*, vol. 13, pp. 73261-73284, 2025, doi: 10.1109/ACCESS.2025.3563235.

[24] H. Huang, S. Sun, D. Wang and W. Xu, "Data Privacy Protection Diagnostic Algorithm for Industrial Robot Joint Harmonic Reducers Based on Swarm Learning," in *IEEE/ASME Transactions on Mechatronics*, doi: 10.1109/TMECH.2025.3528212.

[25] S. A. Aziz *et al.*, "Wireless Rechargeable Sensor Networks: Energy Provisioning Technologies, Charging Scheduling Schemes, and Challenges," in *IEEE Transactions on Sustainable Computing*, doi: 10.1109/TSUSC.2025.3549414.