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Abstract: The transverse-orientation process is at the heart of the new and innovative moth-flame optimization (MFO) technique, 

which draws inspiration from nature. This device incorporates a specialised form of navigational techniques that are symbolic of 

the direct flight of moths toward the moon at night. Although MFO has been successfully applied to a number of optimization 

problems, it still has the same issues as other evolutionary algorithms, namely a sluggish convergence rate and a lack of global 

search capabilities. To remedy this, we introduce the Mathematical Operator Based MFO Algorithm (or MOP-MFO for short). 

There are two stages to the planned MOP-MFO. After the position update phase of the original MFO algorithm, a simple quadratic 

interpolation approach is added to accelerate the convergence rate. The non-linear operator is introduced to keep a healthy balance 

between expansion and specialisation. The suggested MOP-MFO, MFO has been put through its paces by being compared to 36 

traditional benchmark functions picked from the literature, and then statistically tested using a procedure called the Friedman rank 

test. Two engineering design challenges have also been solved using the MOP-MFO to demonstrate its problem-solving potential. 

These findings confirmed that the suggested MOP-MFO out performed competing optimization techniques. 

Keywords: Moth flame optimization, Evolutionary Algorithms, Quadratic interpolation. Benchmark functions. 
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I. INTRODUCTION 

Researchers are focusing more and more on machine learning and 

AI techniques because they have a whole large range of practical 

utility and that are used to solve several problems in the real world 

(both constrained and unconstrained, linear and nonlinear, 

continuous and discontinuous) with relative ease [1-2]. Due to the 

foregoing heterogeneity, traditional methods involving 

mathematical programming or numerical method, such as the 

quasi-Newton method, conjugate gradient, SQP, and rapid steepest 

approach [3-4], present a number of challenges when applied to 

these situations. Experimental evidence from a wide range of 

studies [5] shows that none of the aforementioned approaches is 

adequate for dealing with the complexity of real-world multimodal 

problems that are neither continuous nor differentiable. Because of 

its straightforwardness and versatility, the meta-heuristics 

algorithm has proven indispensable in the face of numerous 

challenges. Optimization typically use resident-based algorithms 

to provide optimum and sub-optimal solutions that are close to but 

not identical to the true optimal value. Algorithms like this often 

start with a random collection of initial solutions and repeatedly 

improve those answers until they reach the global optimum.   

The study of optimization techniques spans a vast expanse, and 

progress in this domain is rapid. Few examples are discussed in 

[6-18]. We examine the MFO algorithm in detail here. In 2015, 

Mirjalili [19] discovered MFO, an algorithm based on swarm 

intelligence. The transverse orientation used by moths to find their 

way around in the wild served as inspiration for MFOs. The 

creator of the MFO has demonstrated that, over 29 different 

benchmark functions, it outperforms the other major 

metaheuristic algorithms. The fundamental benefit of MFO over 

all other conventional algorithms is the robust capability to tackle 

a wide variety of difficult issues involving confined and unknown 

search spaces. 

Due to its straightforward approach and numerous benefits, the 

MFO algorithm has seen widespread use in the past few years, 

particularly in the fields of science and engineering. Applications 

of MFO have been demonstrated in [20], [21], and [22]. A middle 

ground must be found between the two, the authors of [23] 

employ three novel methods: iterative division, the Cauchy 

distribution function, and the best flame methodology. To speed 

up the convergence and getting rid of local optimum stagnation,  

Zhao et al. [25] proposed multiswarm improved moth flame 

optimization (MIMFO) with the aid of chaotic and dynamic 

grouping mechanism to improve the population diversity. Further, 

they incorporated linear and spiral search strategies and Gaussian 

mutation to enhance the searching ability and to maintain a 

diversification-intensification balance. An improved MFO (I-

MFO) method was created by Nadimi Sahakai et al. [26] that 

assists in locating captured moths at regional maxima by 

characterizing their individual memories. Adapted walking 

around search (AWAS) is a common method used by trapped 
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moths to escape the local optima that has trapped them. Recently, 

Li et al. [28] created the ODSMFO method with the help of the 

OBL mechanism and DE (differential evolution), as well as an 

enhanced local search technique and the death mechanism for 

diversity enhancement. Shan et al. [29] showed that the MFO 

algorithm may be stabilized using the double adaptive weight 

mechanism (WEMFO) and to test its effectiveness, the WEMFO 

was utilized to train kernel extreme learning machines (KELMs). 

An enhanced MFO (EMFO) was developed by Sahoo et al. [30] 

by embedding the mutualism strategy on the basic MFO for a 

better balance between the search processes by enhancing its 

searching capability. 

Several strategies were offered to boost MFO performance. High-

dimensional complicated optimization problems still need 

advancements in areas like convergence rate, 

exploration/exploitation balance, and finding the global optimum. 

To solve global optimization problems, Millie Pant et al. [31] 

combine quadratic interpolation with a tweaked version of 

particle swarm optimization; the resulting experimental 

performance outperforms more conventional techniques. Better 

balancing of intensification and diversity is required, Yongjun 

Sun et al. [32] recently created a quadratic interpolation method 

in the WOA algorithm they named QIWOA, which has yielded 

better results than more conventional meta-heuristic algorithms. 

Therefore, by motivating from above articles, we've integrated a 

different type of non-linear operator with quadratic interpolation 

into the basic MFO algorithm to achieve similar performance 

gains to those shown in the aforementioned studies. It has been 

determined that MOP-MFO outperforms the other Metaheuristic 

optimization techniques by comparing their results to those 

obtained using the proposed MOP-MFO algorithm, we have taken 

from the literature having a set of 36 benchmark test functions. 

In the remaining portions of this article, we will do the following: 

In Sect. 2, In this article, we present a high-level summary of the 

MFO algorithm. Specifically, Sect. 3 demonstrates the suggested 

MOP-MFO algorithm. Sect. 4 contains the simulation results and 

the performance evaluation, convergence study, as well as some 

benchmark functions. In Section 5, we see how this method can 

be used to a real world scenario, and the last Section 6, last but 

not least, we arrive at a few conclusions. 

Moth flame optimization 

Moths, as an insect, are classified under the phylum Arthropoda. 

Researchers are intrigued by moth navigation because of its 

apparent uniqueness. Moths navigate via a transverse orientation 

mechanism and fly at night so that they can take advantage of the 

moon's light. They use the moon's beam to fly in a line like an 

arrow across the sky by maintaining a constant with regard to the 

Moon's inclination. The moth's inclination is most effective when 

the distance to the flame is small; in this case, the moth will fly in 

a helical pattern around the flame, bringing it closer to the source 

of light. Using mathematical modelling and moth behaviour, 

Mirjalili created the MFO algorithm in 2015. 

MFO Algorithm: 

For each moth, the original MFO algorithm generates a list of 

potential solutions. Every moth's location is encoded as a vector 

of alternatives. First, let's examine this moth matrix. 

 

X= [

X1

X2

⋮
XN

] =

[
 
 
 
 

m1,1 m1,2 ⋯ m1,n−1 m1,n

m2,1 ⋱ ⋯ ⋯ m2,n

⋮ ⋯ ⋱ ⋯ ⋮
mN−1,1 ⋯ ⋯ ⋱ mN−1,n

mN,1 mN,2 ⋯ mN,n−1 mN,n ]
 
 
 
 

  

   (1)  

 

Where, 𝑋𝑖 = [𝑚𝑖,1,  𝑚𝑖,2, … ,𝑚𝑖,𝑛], 𝑖 ∈ {1, 2, … , 𝑁}. 

𝑁 is the no. of moths in the original population, while ‘𝑛’ denotes 

numbers of variable. The moth's fitness of x vector is as follows: 

fit[X] = [

fit[X1]

fit[X2]
⋮

fit[Xn]

]      

   (2) 

As important as the MFO method is, the flame matrix plays a 

secondary role. We have consider the following flame matrix 

(𝑭𝑴𝒎)  

𝑭𝑴𝒎 = [

𝐹𝑀𝑚1

𝐹𝑀𝑚2

⋮
𝐹𝑀𝑚𝑁

] =

[
 
 
 
 

𝐹𝑚1,1 𝐹𝑚1,2 ⋯ 𝐹𝑚1,𝑛−1 𝐹𝑚1,𝑛

𝐹𝑚2,1 ⋱ ⋯ ⋯ 𝐹𝑚2,𝑛

⋮ ⋯ ⋱ ⋯ ⋮
𝐹𝑚𝑁−1,1 ⋯ ⋯ ⋱ 𝐹𝑚𝑁−1,𝑛

𝐹𝑚𝑁,1 𝐹𝑚𝑁,2 ⋯ 𝐹𝑚𝑁−1 𝐹𝑚𝑁,𝑛 ]
 
 
 
 

  

   (3) 

Now we can keep track of (𝐹𝑀𝑥) fitness in the following matrix: 

𝑭𝒊𝒕[𝑭𝑴𝒎] =

[
 
 
 
 

[

𝐹𝑖𝑡(𝐹𝑀𝑚1)
𝐹𝑖𝑡(𝐹𝑀𝑚2)

⋮
𝐹𝑖𝑡(𝐹𝑀𝑚𝑁)

]

]
 
 
 
 

    

     (4) 

Here Fit (∗) represents fitness function candidate solution. Moth 

and flame are two important components of MFO algorithm. 

Moth moves spirally when it nearer to the flame therefore, author 

used a logarithmic spiral function which is as follows: 

 𝑚𝑖
𝐾+1 = {

𝛿𝑖 ∙ 𝑒𝑏𝑡 ∙ 𝑐𝑜𝑠(2𝜋𝑡) +𝐹𝑚𝑖(𝑘),         𝑖 ≤ 𝑁. 𝐹𝑀

𝛿𝑖 ∙ 𝑒𝑏𝑡 ∙ 𝑐𝑜𝑠(2𝜋𝑡) +𝐹𝑚𝑁.𝐹𝑀(𝑘), 𝑖 ≥ 𝑁. 𝐹𝑀
 

    (5) 

Where, 𝛿𝑖 = |𝑚𝑖
𝐾 − 𝐹𝑚𝑖|  

indicates the moth's flight distance and its own unique flame 

(𝐹𝑚𝑖) at the  𝑖𝑡ℎ location, and the random number between −1 and 

1 be 𝑡. Here 𝑏 is a fixed constant equal one used to recognize the 

spiral flight shape. 

𝑎1 = −1 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (
−1

𝑚𝑎𝑥𝑖𝑡𝑒𝑟
)   

    (6) 
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𝑡 = (𝑎1 − 1) × 𝑟𝑎𝑛𝑑() + 1    

     (7)  

where, 𝑚𝑎𝑥𝑖𝑡𝑒𝑟  implies the max no. of iterations, the global and 

local mechanisms at work in the standard MFO method are shown 

by the linear decline of the convergence constant 𝑎1 from (−1) to 

(−2). 

Current and prior flame positions are gathered and organised by 

global and local fitness in every iteration. Other flames are 

extinguished, and only the finest 𝑁. 𝐹𝑀 flames are maintained. 

The fittest flames are the first and last ones. The moths arrived to 

seize the flames. Moths in the same and lower orders invariably 

take the final flame. According to the amount of flames (N.FM) 

that have been lowered throughout and iteration can be calculated 

using the formula below.    

𝑁. 𝐹𝑀 = 𝑟𝑜𝑢𝑛𝑑 (𝑁. 𝐹𝑀𝐿𝑠𝑡 𝑖𝑡 − 𝑐𝑟𝑛𝑡. 𝑖𝑡
(𝑁.𝐹𝑀𝐿𝑠𝑡 𝑖𝑡−1)

𝑚𝑎𝑥 𝑖𝑡
)  

   (8) 

More information regarding MFO may be found in reference [9]. 

Proposed MOP-MFO algorithm 

The two main characteristics of the metaheuristic algorithms 

include exploration and intensification of the search space and 

make a proper balance between the two. Diversification involves 

searching the entire region, whereas exploitation is characterized 

as examining promising areas around a potential solution. Both of 

these occurrences aid the algorithm in preventing the dreaded 

"local minima stagnation problem" (from being exploited) and 

yield more optimal answers with improved convergence and 

diversity (from exploration). The harmony between these two 

phenomena is also noteworthy. State-of-the-art algorithms 

include those that satisfy these three criteria. The research 

suggests that MFO, a relatively new technique, has drawbacks 

related to handling difficulties with vast numbers of parameters, 

poor solution accuracy, a slow convergence rate, and a dearth of 

possible solutions, and a tendency to slip into local optimal. Also, 

it's possible that the algorithm won't benefit from just enhancing 

the exploration and not the exploitation. In order to states these 

problems, a new MFO algorithm that incorporates quadratic 

interpolation into the original MFO algorithm has been devised 

and put to the test on a set of some of the benchmark functions. In 

the following parts, we will go into greater depth about the 

proposed method. 

Effect of best flame 

An author of MFO claims that moths constantly adjust their 

locations in relation to their respective flames. Each iteration 

follows a pattern in which flames are given to specific moths. The 

moths will fly from the best flame to the poorest flame in reverse 

order. In nature, moths do not behave like this at all. Giving each 

and every moth, a flame increases the exploration phase but 

decreases the exploitation potential. As a result, in the proposed 

method, each moth will adjust its position so that it faces the best 

flame and its corresponding flame; more precisely, each moth will 

move so that it faces the average of the compared to others moth 

best flame and its corresponding flame. This improves the 

convergence speed, the final outcomes demonstrate that almost of 

the provided function have superior mean and SD figures 

compared to the others. What follows is the revised equation: 

 

 mi
K+1 =

 {
δi ∙ e

bt ∙ cos(2πt) +Fmi,                                                     𝑖 ≤ 𝑁. 𝐹𝑀

δi ∙ e
bt ∙ cos(2πt) +0.5[𝑐. Fmi + (1 − 𝑐). 𝐹𝑚𝑏𝑒𝑠𝑡(𝑖), 𝑖 ≥ 𝑁. 𝐹𝑀

 (9) 

In this case, the best and corresponding flame are both controlled 

by the parameter "c = 0.5- 0.3* (current iteration / total iteration)," 

a linearly decreasing function. With respect to the no. of 

iterations, the value of "c" is between 0.3 and 0.2. The parameter 

is initially set to a high value, which indicates a strong effect from 

the associated flame, allowing the moth to efficiently probe the 

search space. Next, in subsequent phases, we reduce c's value to 

speed up convergence and get closer to the optimal flame. 

Quadratic interpolation method (QIM) 

We also used a straightforward quadratic interpolation technique 

to optimise the MFO algorithm's equilibrium between broad and 

narrow searches. MOP-MFO was found to be superior to other 

variant algorithms in the study's results. This interpolation 

technique is commonly utilised [48, 49], and [50] due to its high 

reference value for optimization algorithms. Eq. [10] provides the 

equation for the adjusted update. 

𝑥𝑑 = 0.5 ∗
[(𝑥𝑑

𝑟1)2−(𝑥𝑑
𝑟2)2]𝐹(𝑋∗)−[(𝑥𝑑

𝑟1)2−(𝑥𝑑
∗)2]𝐹(𝑋𝑟2)−[(𝑥𝑑

𝑟2)2−(𝑥𝑑
∗)2]𝐹(𝑋𝑟1)

[𝑥𝑑
𝑟1−𝑥𝑑

𝑟2]𝐹(𝑋∗)+[𝑥𝑑
𝑟1−𝑥𝑑

∗]𝐹(𝑋𝑟2)+[𝑥𝑑
𝑟2−𝑥𝑑

∗]𝐹(𝑋𝑟1)
        

  (10) 

Where, d= 1, 2, …., D, 𝑋𝑟1 = (𝑥1
𝑟1 , 𝑥2

𝑟1 , … , 𝑥𝐷
𝑟1), 𝑋∗ =

(𝑥1
∗, 𝑥2

∗, … , 𝑥𝐷
∗) and 𝑋𝑟2 = (𝑥1

2, 𝑥2
𝑟2 , … , 𝑥𝐷

𝑟2) are three 

different solutions with respect to fitness 𝐹(𝑋𝑟1), 𝐹(𝑋∗) and 

𝐹(𝑋𝑟2) respectively. These different search solutions have used 

to produce new position, where  

both 𝑋𝑟1  and 𝑋𝑟2  are random solutions and 𝑋∗ be the finest 

solution of the current population.  

The working procedure of MOP-MFO has been given in the 

Algorithm 1 and details are outlines as shown: 

• 1st step: Set all parameters, including the no. of 

populations, the no. of iterations, and the evaluation 

function, at random. 

• 2nd Step: Utilizing equation 8, sort the moth matrix and 

flame matrix according to fitness value, then recalculate 

the fire count to reflect the current situation. 

• 3rdstep: Using equations 6, 7 and 9 update 𝑟, 𝑡 and place 

of the moth  w.r.t. flame. 

• 4th Step: To find the most fitness value of the new 

outcome solutions after updating them using quadratic 

interpolation equation 10. The best fitness provides the 

greatest value. 

• 5th Step: Continue to the second step until you obtain 

the best fitness value if it does not meet the stopping 

condition. 
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II.RESULT AND DISCUSSIONS 

This section contains a brief introduction to benchmark functions 

as well as various explanations of the results gained from both 

unimodal and multimodal benchmark functions. Functions that 

make up the Benchmark are broken down in further depth in 

section 4.1. In section 4.2, we talk about how to conduct 

experiments using our proposed methodology. Subsection 4.3 

compared MOP-MFO to MFO and other evolutionary algorithms. 

Subsections 4.4 and 4.5 present the Convergence analysis of 

Benchmark functions 

Benchmark functions 

The effectiveness of a brand-new metaheuristic algorithm needs 

to be verified and compared to that of established metaheuristic 

algorithms across a reliable collection of test functions. Therefore, 

Benchmark functions are crucial in ensuring the robustness, 

veracity, and efficacy of algorithms. These test functions are 

supplied in Appendix-1, and they were meticulously chosen from 

[33]. Thirty-six benchmark functions, half of which are unimodal 

and half of which are multimodal, have been chosen to test our 

proposed MOP-MFO algorithm. 

For each given unimodal function, there is only one local 

minimum that may be identified as the global minimum. is 

included in the set of chosen unimodal functions (F1 through 

F15). The stochastic optimization algorithm's exploitability is 

verified with the help of unimodal functions. The best meta-

heuristic algorithms optimize these functions by taking full use of 

them. 

Many local minimum values are connected with the selected 

multimodal functions (F16–F36), making them more difficult to 

solve than unimodal functions due to the fact that their solutions 

get stuck at local optima and can't be avoided. The no. of local 

optima values and the size of the search space both increase the 

difficulty of multimodal functions. These operations put the 

exploratory prowess of metaheuristic algorithms to the test by 

probing their propensity to discover previously undiscovered 

regions. 

Experimental setup 

The proposed algorithm's code is developed in MATLAB R2015a 

and put into practice using a PC running Windows 2010 with an 

Intel i5 processor and 8 GB of RAM. Our suggested algorithm is 

used as a base to stop after no more than 10,000 iterations. The 

algorithm can be stopped in a variety of ways, including the 

largest number of successful repetitions, a predetermined margin 

of error, the largest CPU time use, the largest no. of iterations with 

0 improvement, etc. For each of the function, 30 runs were 

performed, and the results were rounded up to two decimal places 

in order to reduce statistical mistakes and provide results that were 

statistically significant. 

We collate the MOP-MFO’s average (𝐴𝑉𝑟𝑔) and standard 

Deviation (𝑆𝑑𝑒𝑣) using additional techniques. To meet this 

requirement, one specific combination of elements was employed 

for MOP-MFO in the copies of the benchmark unimodal and 

multimodal functions. The size of the population is fifty, and then 

the powers exponent constants b and t range from 1 to 1. (50). 

Results from Experiments on Benchmark Functions 

In this section, we provide the simulation results obtained using 

our proposed MOP-MFO and compare them to the results 

obtained using six existing metaheuristics (DE, MFO, SOS, PSO, 

JAYA, and WOA) on thirty-six benchmark functions (both 

unimodal and multimodal). 

Analysis of unimodal functions: 

In Table 1, we can see the 𝐴𝑉𝑟𝑔 and 𝑆𝑑𝑒𝑣  for the six algorithms 

(including MOP-MFO) and the optimized unimodal functions. 

The table clearly shows that MOP-MFO provided the smallest 

numbers when compared to the other methods. For the functions 

F1 to F14, the MOP-MFO algorithm yields the most optimal 

solutions. It produces mediocre results for functions F4, F8, F12, 

and F15, and second rate best outcomes for F6 and F10. The best 

outcomes are highlighted in bold. Because of this, it is safe to 

assume that our method is a more effective algorithm than the 

alternatives. 

Discussion on Multimodal functions: 

Multimodal function optimization research for functions F16 – 

F36 is shown in Table 2. Clear evidence exists that MOP-MFO 

outperforms competing algorithms on the following problems: 

F16 - F20, F26, F27, from F29-F34, and F35. MOP-MFO supplies 

the second rate best outcomes for the func. F23, F28, and F36, but 

it falls short when compared to the best algorithms for the other 

five functions. Therefore, it can be concluded that MOP-MFO is 

the best algorithm for optimizing multimodal functions out of the 

seven considered. 

Algorithm1: Pseudocode of the MOP-MFO algorithm. 

Table 1: Performance of MOP-MFO with other considered 

algorithms. 
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Table 2(a): Comparison of multimodal functions of MOP-

MFO with other considered algorithms 

 

Table 3 displays the number of times MOP-mean MFO's 

performance was better, equal to, or worse than the other six 

methods. Using the data in Table 3, we can observe that MOP-

MFO outperforms MFO, SOS, PSO, DE, BOA, JAYA, DE, and 

WOA on 16 out of 33 benchmark functions, achieves equivalent 

results on 15 times, and achieves poorer values on 1 occasion, 6, 

6, 5, 8, and 3. Appendix-1 displays the mathematical formulation 

of the thirty-six (thirty-six) reference functions together with their 

dimensions, variable ranges, and optimal values. 

Table 3: Simulation outcomes of MOP-MFO compared with 

other algorithms 

 

 

Convergence Analysis 

Several algorithms, including PSO, DE, MFO, SOS, BOA, and 

JAYA, and their respective convergence graphs for a small set of 

benchmark functions are provided in Fig. 1 for the purpose of 

comparison. Both the given value function evaluation and on the 

other hand objective function value are displayed in these graphs, 

on separate horizontal and vertical axes. MOP-MFO clearly has 

faster convergence than the alternatives. 

Our suggested MOP-MFO technique is then applied to two more 

engineering issues, both of which are solved in the subsequent 

section. 

 
 

 
 

Fig. 1: Convergence graph 

 

Description of real-life problems solved: 

To demonstrate the efficacy of MFO, Specifically, it has been 

implemented and used to address two actual world issues 

(RWPs): the optimum gas output power problem and the gear 

train problem. The mathematical expression of the 

aforementioned issues is presented in Appendix-2. 

Proposed 

MOP-

MFO 

algorith

m 

MF

O 

SOS PSO D

E 

WO

A 

JAY

A 

Better 

(>)  

16 2

0 

2

8 

28 15 33 

Equal (=)  19 1

0 

2 3 13 0 

Worst 

(<)  

1 6 6 5 8 3 
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The Gas Industry's Optimal Production Capacity Problem 

To further complicate matters, this issue is adapted from [34]. The 

efficiency of MOP-MFO has been evaluated by applying it to the 

problem of creating gas. As shown in Table 6, we compared DE, 

GSA, and a hybrid DE-GSA to experimental results for this 

problem. Table 4 shows, in bold type, that our suggested method 

is more efficient than competing techniques. 

Table 4: Comparison performance of MOP-MFO of the gas 

capacity problem 

The problem of Gear Train Design 

Mechanical engineers use it to find the best possible ratio of gears 

for a train's four gears [35]. It's unconstrained and uses four 

variables. As limitations, we use the variables' ranges. Fig. 2 

depicts the schematics of the aforementioned issue. 

 

Fig. 2: gear train design problem. 

Table 5 displays the results of a comparison between MOP-MFO, 

and eight different metaheuristic algorithms derived from [36], 

demonstrating the effectiveness of MOP-MFO in solving the 

aforementioned problem. According to Table 5, the results 

obtained by the MOP-MFO algorithm are superior to those 

obtained by the other algorithms. 

 

Table 5: Comparison results of MOP-MFO on problem of gear 

design. 

 

III.CONCLUSION 

In light of what has been discussed above, we may say that m-

capacity MFO's for intensification is extraordinary, as seen by the 

outcomes of optimization of unimodal functions. Approximately 

90% of the benchmark functions return results that are acceptable. 

MOP-MFO's high-class performance when compared to other 

variant algorithms is indicative of its excellent diversification 

capabilities. MOP-MFO is more adept at balancing global and 

local searches. 

MOP-MFO can be modified to address multi-objective 

optimization, combinatorial optimization, and constrained 

optimization issues; so, it has vast potential for further 

development and improvement. QIWOA can also be used to 

address more intricate issues in the actual world. 

Appendix-1 

Table 1(a): Formalization of unimodal functions in mathematics 

 

 

http://www.oaijse.com/


|| Volume 3 || Issue 06 || 2018 || ISO 3297:2007 Certified ISSN (Online) 2456-3293 
 

                                                                             WWW.OAIJSE.COM                                                                             58 

 

 

Table- 1(b): Formalization of multimodal functions in 

mathematics 

Apendix-2 

The Gas Industry's Optimal Production Capacity Problem: 

Min f(x) = 61.8 + 5.72 × x1 × 0.2623

× [(40 − x1) × ln
x2

200
]
−0.85

+ 0.087 × (40 − x1) × ln
x2

200
+ 700.23 × x2

−0.75 

s.t. x1 ≥ 17.5, x2 ≥ 200, 17.5 ≤ x1 ≤ 40, 300 ≤ x2 ≤ 600; 

The problem of Gear Train Design: 

Minimize f(x⃗ ) =  [
1

6.931
−

x3x2

x1x4
]
2

, 

Subjected to 12 ≤ x1, x2, x3, x4 ≤ 60, 

Where x⃗ = [x1x2x3x4] = [nα nβ nγ nδ ]. 
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