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Abstract: The transverse-orientation process is at the heart of the new and innovative moth-flame optimization (MFO) technique,
which draws inspiration from nature. This device incorporates a specialised form of navigational techniques that are symbolic of
the direct flight of moths toward the moon at night. Although MFO has been successfully applied to a number of optimization
problems, it still has the same issues as other evolutionary algorithms, namely a sluggish convergence rate and a lack of global
search capabilities. To remedy this, we introduce the Mathematical Operator Based MFO Algorithm (or MOP-MFO for short).
There are two stages to the planned MOP-MFO. After the position update phase of the original MFO algorithm, a simple quadratic
interpolation approach is added to accelerate the convergence rate. The non-linear operator is introduced to keep a healthy balance
between expansion and specialisation. The suggested MOP-MFO, MFO has been put through its paces by being compared to 36
traditional benchmark functions picked from the literature, and then statistically tested using a procedure called the Friedman rank
test. Two engineering design challenges have also been solved using the MOP-MFO to demonstrate its problem-solving potential.

These findings confirmed that the suggested MOP-MFO out performed competing optimization techniques.
Keywords: Moth flame optimization, Evolutionary Algorithms, Quadratic interpolation. Benchmark functions.

L. INTRODUCTION

Researchers are focusing more and more on machine learning and
Al techniques because they have a whole large range of practical
utility and that are used to solve several problems in the real world
(both constrained and unconstrained, linear and nonlinear,
continuous and discontinuous) with relative ease [1-2]. Due to the
foregoing  heterogeneity, involving
mathematical programming or numerical method, such as the
quasi-Newton method, conjugate gradient, SQP, and rapid steepest
approach [3-4], present a number of challenges when applied to
these situations. Experimental evidence from a wide range of
studies [5] shows that none of the aforementioned approaches is
adequate for dealing with the complexity of real-world multimodal
problems that are neither continuous nor differentiable. Because of
its straightforwardness and versatility, the meta-heuristics
algorithm has proven indispensable in the face of numerous
challenges. Optimization typically use resident-based algorithms
to provide optimum and sub-optimal solutions that are close to but
not identical to the true optimal value. Algorithms like this often
start with a random collection of initial solutions and repeatedly
improve those answers until they reach the global optimum.

traditional  methods

The study of optimization techniques spans a vast expanse, and
progress in this domain is rapid. Few examples are discussed in
[6-18]. We examine the MFO algorithm in detail here. In 2015,
Mirjalili [19] discovered MFO, an algorithm based on swarm

intelligence. The transverse orientation used by moths to find their
way around in the wild served as inspiration for MFOs. The
creator of the MFO has demonstrated that, over 29 different
benchmark functions, it outperforms the major
metaheuristic algorithms. The fundamental benefit of MFO over
all other conventional algorithms is the robust capability to tackle
a wide variety of difficult issues involving confined and unknown

other

search spaces.

Due to its straightforward approach and numerous benefits, the
MFO algorithm has seen widespread use in the past few years,
particularly in the fields of science and engineering. Applications
of MFO have been demonstrated in [20], [21], and [22]. A middle
ground must be found between the two, the authors of [23]
employ three novel methods: iterative division, the Cauchy
distribution function, and the best flame methodology. To speed
up the convergence and getting rid of local optimum stagnation,
Zhao et al. [25] proposed multiswarm improved moth flame
optimization (MIMFO) with the aid of chaotic and dynamic
grouping mechanism to improve the population diversity. Further,
they incorporated linear and spiral search strategies and Gaussian
mutation to enhance the searching ability and to maintain a
diversification-intensification balance. An improved MFO (I-
MFO) method was created by Nadimi Sahakai et al. [26] that
assists in locating captured moths at regional maxima by
characterizing their individual memories. Adapted walking
around search (AWAS) is a common method used by trapped
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moths to escape the local optima that has trapped them. Recently,
Li et al. [28] created the ODSMFO method with the help of the
OBL mechanism and DE (differential evolution), as well as an
enhanced local search technique and the death mechanism for
diversity enhancement. Shan et al. [29] showed that the MFO
algorithm may be stabilized using the double adaptive weight
mechanism (WEMFO) and to test its effectiveness, the WEMFO
was utilized to train kernel extreme learning machines (KELMs).
An enhanced MFO (EMFO) was developed by Sahoo et al. [30]
by embedding the mutualism strategy on the basic MFO for a
better balance between the search processes by enhancing its
searching capability.

Several strategies were offered to boost MFO performance. High-
dimensional complicated optimization problems still need
advancements in areas like convergence rate,
exploration/exploitation balance, and finding the global optimum.
To solve global optimization problems, Millie Pant et al. [31]
combine quadratic interpolation with a tweaked version of
particle swarm optimization; the resulting experimental
performance outperforms more conventional techniques. Better
balancing of intensification and diversity is required, Yongjun
Sun et al. [32] recently created a quadratic interpolation method
in the WOA algorithm they named QIWOA, which has yielded
better results than more conventional meta-heuristic algorithms.
Therefore, by motivating from above articles, we've integrated a
different type of non-linear operator with quadratic interpolation
into the basic MFO algorithm to achieve similar performance
gains to those shown in the aforementioned studies. It has been
determined that MOP-MFO outperforms the other Metaheuristic
optimization techniques by comparing their results to those
obtained using the proposed MOP-MFO algorithm, we have taken
from the literature having a set of 36 benchmark test functions.

In the remaining portions of this article, we will do the following:
In Sect. 2, In this article, we present a high-level summary of the
MFO algorithm. Specifically, Sect. 3 demonstrates the suggested
MOP-MFO algorithm. Sect. 4 contains the simulation results and
the performance evaluation, convergence study, as well as some
benchmark functions. In Section 5, we see how this method can
be used to a real world scenario, and the last Section 6, last but
not least, we arrive at a few conclusions.

Moth flame optimization

Moths, as an insect, are classified under the phylum Arthropoda.
Researchers are intrigued by moth navigation because of its
apparent uniqueness. Moths navigate via a transverse orientation
mechanism and fly at night so that they can take advantage of the
moon's light. They use the moon's beam to fly in a line like an
arrow across the sky by maintaining a constant with regard to the
Moon's inclination. The moth's inclination is most effective when
the distance to the flame is small; in this case, the moth will fly in
a helical pattern around the flame, bringing it closer to the source
of light. Using mathematical modelling and moth behaviour,
Mirjalili created the MFO algorithm in 2015.

MFO Algorithm:

For each moth, the original MFO algorithm generates a list of
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potential solutions. Every moth's location is encoded as a vector
of alternatives. First, let's examine this moth matrix.

X, my 4 mynq my
X mz 1 m;n
X= |2 :
X'N mN 11 MN-1n
My, Mp2 myp-1  Myp
(1)

Where, Xi = [mi‘l, mi’Z, ...,mi,n], i € {1, 2, ey N}

N is the no. of moths in the original population, while ‘n’ denotes
numbers of variable. The moth's fitness of x vector is as follows:
fit[X,]
fit[x] = | tXe]

flt[ ol

2

As important as the MFO method is, the flame matrix plays a
secondary role. We have consider the following flame matrix
(FMm)

FMm,
FMm = | MMz |
FMmy
Fmy, Fmy, Fmy, . Fmy,
sz,l FmZ,Tl
lFmN_l'l FmN—l,‘nJ
Fmy, Fmy, Fmy_y Fmy
3)
Now we can keep track of (FMx) fitness in the following matrix:
Fit(FMm,)
Fit[FMm] = || FE(FMm2)
Fit(FMmy)

4
Here Fit (*) represents fitness function candidate solution. Moth
and flame are two important components of MFO algorithm.
Moth moves spirally when it nearer to the flame therefore, author
used a logarithmic spiral function which is as follows:

ke1 _ [6iePt - cos(2mt) + Fm;(k), i<N.FM
m; - bt .
6; e’ ~cos(2mt) + Fmypy(k), i = N.FM
(5)

Where, §; = |mK — Fmy|

indicates the moth's flight distance and its own unique flame
(Fm;) at the i location, and the random number between —1 and

1 be t. Here b is a fixed constant equal one used to recognize the
spiral flight shape.

a, = —1 + current iteration ( )
maxiter

(6)
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t=(a,— 1) xXrand() +1

(7)
where, max;;., implies the max no. of iterations, the global and
local mechanisms at work in the standard MFO method are shown
by the linear decline of the convergence constant a; from (—1) to
(—2).
Current and prior flame positions are gathered and organised by
global and local fitness in every iteration. Other flames are
extinguished, and only the finest N. FM flames are maintained.
The fittest flames are the first and last ones. The moths arrived to
seize the flames. Moths in the same and lower orders invariably
take the final flame. According to the amount of flames (N.FM)
that have been lowered throughout and iteration can be calculated
using the formula below.

N.FM = round (N.FMLst it —crnt.it
(®)
More information regarding MFO may be found in reference [9].

Proposed MOP-MFO algorithm

(N-FMLstit_l))
max it

The two main characteristics of the metaheuristic algorithms
include exploration and intensification of the search space and
make a proper balance between the two. Diversification involves
searching the entire region, whereas exploitation is characterized
as examining promising areas around a potential solution. Both of
these occurrences aid the algorithm in preventing the dreaded
"local minima stagnation problem" (from being exploited) and
yield more optimal answers with improved convergence and
diversity (from exploration). The harmony between these two
phenomena is also noteworthy. State-of-the-art algorithms
include those that satisfy these three criteria. The research
suggests that MFO, a relatively new technique, has drawbacks
related to handling difficulties with vast numbers of parameters,
poor solution accuracy, a slow convergence rate, and a dearth of
possible solutions, and a tendency to slip into local optimal. Also,
it's possible that the algorithm won't benefit from just enhancing
the exploration and not the exploitation. In order to states these
problems, a new MFO algorithm that incorporates quadratic
interpolation into the original MFO algorithm has been devised
and put to the test on a set of some of the benchmark functions. In
the following parts, we will go into greater depth about the
proposed method.

Effect of best flame

An author of MFO claims that moths constantly adjust their
locations in relation to their respective flames. Each iteration
follows a pattern in which flames are given to specific moths. The
moths will fly from the best flame to the poorest flame in reverse
order. In nature, moths do not behave like this at all. Giving each
and every moth, a flame increases the exploration phase but
decreases the exploitation potential. As a result, in the proposed
method, each moth will adjust its position so that it faces the best
flame and its corresponding flame; more precisely, each moth will
move so that it faces the average of the compared to others moth
best flame and its corresponding flame. This improves the
convergence speed, the final outcomes demonstrate that almost of
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the provided function have superior mean and SD figures
compared to the others. What follows is the revised equation:

mk+! =

8; - Pt cos(2mt) + Fmy, i<N.FM

{Si - Pt cos(2mt) + 0.5[c. Fm; + (1 — ¢). Fmy,s (i), i = N.FM
€))

In this case, the best and corresponding flame are both controlled
by the parameter "c = 0.5- 0.3* (current iteration / total iteration),"
a linearly decreasing function. With respect to the no. of
iterations, the value of "c" is between 0.3 and 0.2. The parameter
is initially set to a high value, which indicates a strong effect from
the associated flame, allowing the moth to efficiently probe the
search space. Next, in subsequent phases, we reduce c's value to
speed up convergence and get closer to the optimal flame.

Quadratic interpolation method (QIM)

We also used a straightforward quadratic interpolation technique
to optimise the MFO algorithm's equilibrium between broad and
narrow searches. MOP-MFO was found to be superior to other
variant algorithms in the study's results. This interpolation
technique is commonly utilised [48, 49], and [50] due to its high
reference value for optimization algorithms. Eq. [10] provides the
equation for the adjusted update.
xg = 0.5 %
[(ra" )2 =(xq"2)?]F (X ) =[(xa"1) % = (xg")*]F (X"2)—[(x4"2)* - (xq")*]F(X"1)

[xg™1—xg"2]F (X*)+[xg"1—xg*IF(X"2)+[xq"2—x4*]F (X"1)

(10)

Where, d= 1, 2, ..., D, X" = (x;" 2,1, ...,xp"™), X* =
(x5, %% o, xp®) and X2 = (x,5,%,72, ..., xp™) are three
different solutions with respect to fitness F(X™), F(X*) and
F(X™) respectively. These different search solutions have used
to produce position,
both X™ and X" are random solutions and X~

where
be the finest

new

solution of the current population.

The working procedure of MOP-MFO has been given in the
Algorithm 1 and details are outlines as shown:

e 1st step: Set all parameters, including the no. of
populations, the no. of iterations, and the evaluation
function, at random.

e 2nd Step: Utilizing equation 8, sort the moth matrix and
flame matrix according to fitness value, then recalculate
the fire count to reflect the current situation.

e 3rdstep: Using equations 6, 7 and 9 update r, t and place
of the moth w.r.t. flame.

e 4th Step: To find the most fitness value of the new
outcome solutions after updating them using quadratic
interpolation equation 10. The best fitness provides the
greatest value.

e 5th Step: Continue to the second step until you obtain
the best fitness value if it does not meet the stopping
condition.
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ILRESULT AND DISCUSSIONS

This section contains a brief introduction to benchmark functions
as well as various explanations of the results gained from both
unimodal and multimodal benchmark functions. Functions that
make up the Benchmark are broken down in further depth in
section 4.1. In section 4.2, we talk about how to conduct
experiments using our proposed methodology. Subsection 4.3
compared MOP-MFO to MFO and other evolutionary algorithms.
Subsections 4.4 and 4.5 present the Convergence analysis of
Benchmark functions

Benchmark functions

The effectiveness of a brand-new metaheuristic algorithm needs
to be verified and compared to that of established metaheuristic
algorithms across a reliable collection of test functions. Therefore,
Benchmark functions are crucial in ensuring the robustness,
veracity, and efficacy of algorithms. These test functions are
supplied in Appendix-1, and they were meticulously chosen from
[33]. Thirty-six benchmark functions, half of which are unimodal
and half of which are multimodal, have been chosen to test our
proposed MOP-MFO algorithm.

For each given unimodal function, there is only one local
minimum that may be identified as the global minimum. is
included in the set of chosen unimodal functions (F1 through
F15). The stochastic optimization algorithm's exploitability is
verified with the help of unimodal functions. The best meta-
heuristic algorithms optimize these functions by taking full use of
them.

Many local minimum values are connected with the selected
multimodal functions (F16—F36), making them more difficult to
solve than unimodal functions due to the fact that their solutions
get stuck at local optima and can't be avoided. The no. of local
optima values and the size of the search space both increase the
difficulty of multimodal functions. These operations put the
exploratory prowess of metaheuristic algorithms to the test by
probing their propensity to discover previously undiscovered
regions.

Experimental setup

The proposed algorithm's code is developed in MATLAB R2015a
and put into practice using a PC running Windows 2010 with an
Intel i5 processor and 8 GB of RAM. Our suggested algorithm is
used as a base to stop after no more than 10,000 iterations. The
algorithm can be stopped in a variety of ways, including the
largest number of successful repetitions, a predetermined margin
of error, the largest CPU time use, the largest no. of iterations with
0 improvement, etc. For each of the function, 30 runs were
performed, and the results were rounded up to two decimal places
in order to reduce statistical mistakes and provide results that were
statistically significant.

We collate the MOP-MFO’s average (AV,4) and standard
Deviation (Sg.,) using additional techniques. To meet this
requirement, one specific combination of elements was employed
for MOP-MFO in the copies of the benchmark unimodal and
multimodal functions. The size of the population is fifty, and then
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the powers exponent constants b and t range from 1 to 1. (50).

Results from Experiments on Benchmark Functions

In this section, we provide the simulation results obtained using
our proposed MOP-MFO and compare them to the results
obtained using six existing metaheuristics (DE, MFO, SOS, PSO,
JAYA, and WOA) on thirty-six benchmark functions (both
unimodal and multimodal).

Analysis of unimodal functions:

In Table 1, we can see the AV, and S, for the six algorithms
(including MOP-MFO) and the optimized unimodal functions.
The table clearly shows that MOP-MFO provided the smallest
numbers when compared to the other methods. For the functions
F1 to F14, the MOP-MFO algorithm yields the most optimal
solutions. It produces mediocre results for functions F4, F§, F12,
and F15, and second rate best outcomes for F6 and F10. The best
outcomes are highlighted in bold. Because of this, it is safe to
assume that our method is a more effective algorithm than the
alternatives.

Discussion on Multimodal functions:

Multimodal function optimization research for functions F16 —
F36 is shown in Table 2. Clear evidence exists that MOP-MFO
outperforms competing algorithms on the following problems:
F16 - F20, F26, F27, from F29-F34, and F35. MOP-MFO supplies
the second rate best outcomes for the func. F23, F28, and F36, but
it falls short when compared to the best algorithms for the other
five functions. Therefore, it can be concluded that MOP-MFO is
the best algorithm for optimizing multimodal functions out of the
seven considered.

Algorithm1: Pseudocode of the MOP-MFO algorithm.

Table 1: Performance of MOP-MFO with other considered
algorithms.

Input: Maximum iteration (Maximumg,,), Objective function, Initial moth number (N),
Flame number (N.FM), b, and other related parameters are determined;
fori= 1:N
for jJ= 1:D
Generate N organism solutions X;j (i = 1,2, ..., N) randomly;
Find fitness;
end

end
While stopping criteria not met do
if Iteration = |
NFM=N,
else
Use Eqn. (8);
end if
FM = Objective Function f(X);
if Iteration = |
Place the moths in order of FM;
Revisit the Flames;
Iteration = 0;
else
Sort the moths according to FM from the previous iteration;
Revisit the Flames;
end if
Reduce the convergence constant,
forj=1:N

fork=1:n
Update @y .t moths' location in relation to their specific flame using Eqn. (6, 7 and 9);
end for

end for
Apply quadratic interpolation and find new solution X" using Eqn. (10) and update according to the
best value;
Current iteration = Current iteration+ 1

End while

Output: The best solution in the ecosystem with the lowest fitness function value;
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Function MOP- MFO 508 PSO JAYA DE WOA
MFO
F1 av, 0 0 603E-173 176E-51  139E+04  261E-165 0
Suew 0 0 0 1IE-50  354E+03 0 0
F2 A, 0 0 0 3I0B-53  186EH2  140E-172 0
Suer 0 0 0 210B-52  208E+l1 0 0
F3 av, 0 0 0 131E-31  147E+04  130E-01 0
Suer 0 0 0 66E-31 29IEH03  485E-01 0
F4 AV, 0 289E+001 -1 257E401  283E+07 235401 242E +01
Ster 0 G44E-002 0 3BEOL 120407 498 0
F5 A, 0 0 227EM 120B+03  654E+4  LI4E-175 0
Suer 0 0 241EHM SMEH02  157E+04 0 0
F6 A, 0 0 124E-86 10SE-01  6.56E+01 102 110
Sier 0 0 126E-%6 6.53E-02 669 4.59E-01 0
7 AV, 0 0 -419E+02 TI8E+01  458E+02 8 15E-91 0
Suer 0 0 0 227E+01  832E+2 123E-90 0
8 Ay 681e01 104 3 0 622 0 644E-08
See  T64E01 178 1$4E-15 0 6.18 0 0
9 AV, 0 0 75IE-13 0 231E-01 0 0
Ster 0 0 399E-12 0 13301 0 0
F10 A, 0 0 462E03 336E+03  102E+02 130E+02 538E-07
Suer 0 0 645E03 9.50E+02  785E+01 1.85E+02 0
Fl1 AV, 36503 -3ISE-003  126E-07 767E+05  153E01  4S9E+03  —3.79E03
Sies  G0E-04  B43E004  329E-07 401E+05  121E-01 271401 0
F12 Ay 91302 8G3E-002  998E-01  —379E-03  441E01  —3.79E03 3.55E-10
Saes  S9GE02  LO2E001  252E-16 0 41201 4.57E-19 0
F13 AV, 0 0 0 619E+01  357E+04 5 11E+04 0
Suew 0 0 0 3ME01 620E+03 0 0
F14 av, 0 0 0 840E+05  1.00E+06 1.00E+06 0
Suew 0 0 0 323405 860E+01 136E+01 0
F15 A, .13 .09 174 373 3.733 2.60E03 8.54
i 3OTE01 368 20E-01 101 218 LO4E-03 0

Table 2(a): Comparison of multimodal functions of MOP-
MFO with other considered algorithms

IS0 3297:2007 Certified

F16 Av, 0 0 0 303E-02  3.04E-02 0 0
Seer 0 0 0 261E-17  269E+02 0 0
F17 AV, $88E-16  L.88E-016  100E-15  18IE<01  196E<0l 171 4.44E-15
Ser 0 0 638E-16 5438 6.33E-01 0 0
FI8 AV, o o 0 405E+01  126E+02  Q22E-17 0
Sies 0 ] 0 413E+01  34IES01  2.04E-17 0
F19 AV, 0 0 0 144E+02  119E=02  124E <01 0
e o o 0 378E+01  126E-01 330 0
F20 AV, o 0 182E-01 0 3.50E+02 0 0
Sies o 0 120E-01 0 LM4E-02 0 0
F2l AV,  941E-01 S411E001  884E+01 -100E<00  -7.24E-14 -1.00 -1
Saes 276 3.69E-001  L22E-03  0.00E-00  4.03E-13 0 0
m AV,  410E+02  405E+02  T04E-25 -75TE+03  403E+02  —-456E<12  —4.18E+02
Sge 135E+01  358E+01  9.02E-25  88SE+02  369E<01  3.19E+12 0
F23 AV,  37T4E-01 153E007 LO9E-117  198E-04  4.50E+01  6.27E—04 1.05
Sues 1.8 123E-002  3.94E-117  L6SE-04  T.40E+01 1.3E-03 0
F24 AV, 130E01  78SE-01  471E-32  272E01  611E+07  L1IE+03  9.74E-08
Sges  1OIEOL  344E01  223E47  471E01  344E+07  184E+03 [
F15 AV, 543 610 9.98E-01 125 110E+02  9.98E-01  126E+0L
Sae 353 362 292E-16  STIEO1  130E+02  2.50E-16 i
F26 AV, 109E-03  S80E-03  327E-04  60SE04  LSIE0L  13TE03  3.07E-04
Sy 9-B0E-04  G72E03  TG0E05  462E-04  LG4EOL  4.T2E-04 [
F27 AV,  398E-01  SI3E-01  398E-01  3.88E-01 150 3.98E-01 278
Sier 1S3E05  136E01  317E-07  S.84E09 105 4.44E-16 [
F18 AV, 961E 172 9,63 621 -6.11E-01 802 -5.06
Sie  3OTEOL 1.03 153 217 277E0L 1.88 [
F29 AV, 9.36 759 -LOIE+DL 714 -BO2E0L £.73 -5.08
Sine  166EOL 113 133 285 401E01  5.68E-01 o
F30 Av, 901 778 -10SE+01 687 -899E-01  -103E+01 Sz
Sgee  139E-0L 120 2.83E15 257 257E-01  3.12E-01 i
F3l AV, 0 0 0 693E-02  T3JE+03  T30E+03 [
Sae 0 0 0 L9TE-02  1.204E+02 0 0
F32 AV, 951  2.19E+01 0 324E-04  195E+06  230E+06  2.52E-10
Saew 731 LISE-0L 0 201E-04  BREH04  214E+01 [
F33 AV,  -159E+03  -137E=03  -235E+03  -629E~02  122E+03  745E+03 298
S.,  TSOE+0L L1402 9.59E-13  LITE=02  141E+02  2.21E+01 [
F34 AV, 0 0 0 LSTES02  G49E+02  236E+03  -S.08E+02
Saew 0 0 0 L86E-01  34SE+01  9.83E-02 0
F35 AV, 0 0 0 LO6E=01 19719E+01  3.34E+01 0
Sae 0 0 0 TEE01  41799E-01  2.08E-01 [
F36 Av, 0 0 998E02  281E-01 42035E+01  525E+01  9.08E-02
e 0 0 199E13 135 52080E-01  4.53E-01 0

Table 3 displays the number of times MOP-mean MFO's
performance was better, equal to, or worse than the other six
methods. Using the data in Table 3, we can observe that MOP-
MFO outperforms MFO, SOS, PSO, DE, BOA, JAYA, DE, and
WOA on 16 out of 33 benchmark functions, achieves equivalent
results on 15 times, and achieves poorer values on 1 occasion, 6,
6, 5, 8, and 3. Appendix-1 displays the mathematical formulation
of the thirty-six (thirty-six) reference functions together with their
dimensions, variable ranges, and optimal values.

Table 3: Simulation outcomes of MOP-MFO compared with
other algorithms

ISSN (Online) 2456-3293

Proposed | MF SOS | PSO D | WO JAY
MOP- (0] E A A
MFO
algorith
m
Better 16 2 2 28 15 33
>) 0 8
Equal (=) 19 1 2 3 13 0

Worst 1 6 6 5 8 3
=)
Convergence Analysis

Several algorithms, including PSO, DE, MFO, SOS, BOA, and
JAYA, and their respective convergence graphs for a small set of
benchmark functions are provided in Fig. 1 for the purpose of
comparison. Both the given value function evaluation and on the

other hand objective function value are displayed in these graphs,
on separate horizontal and vertical axes. MOP-MFO clearly has
faster convergence than the alternatives.

Our suggested MOP-MFO technique is then applied to two more
engineering issues, both of which are solved in the subsequent
section.

o Converges graph of function 1

.10'"  Converges graph of func

= o o
- | X

w

log(f(x)-f(x*))

P 0 20 40 60
0 10 20 30 40 5( Fitness Evaluation
Fitness Evaluation

Converges graph of GRIEWANK f

5 «10% Converges graph of fung

0 20 40 60 0 20 40 sq
Fitness Evaluation Fitness Evaluation

Fig. 1: Convergence graph

Description of real-life problems solved:

To demonstrate the efficacy of MFO, Specifically, it has been
implemented and used to address two actual world issues
(RWPs): the optimum gas output power problem and the gear
train problem. The mathematical expression of the
aforementioned issues is presented in Appendix-2.
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The Gas Industry's Optimal Production Capacity Problem

To further complicate matters, this issue is adapted from [34]. The
efficiency of MOP-MFO has been evaluated by applying it to the
problem of creating gas. As shown in Table 6, we compared DE,
GSA, and a hybrid DE-GSA to experimental results for this
problem. Table 4 shows, in bold type, that our suggested method
is more efficient than competing techniques.

Table 4: Comparison performance of MOP-MFO of the gas
capacity problem

Item DE-GSA GSA DE MFO m-MFO
Xq 17.5 17.5 17.5 17.5 17.5
2 600 600 600 600 600
f(x) 169.844  169.844  169.844  T1.4495 71.448

The problem of Gear Train Design

Mechanical engineers use it to find the best possible ratio of gears
for a train's four gears [35]. It's unconstrained and uses four
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III.CONCLUSION

In light of what has been discussed above, we may say that m-
capacity MFO's for intensification is extraordinary, as seen by the
outcomes of optimization of unimodal functions. Approximately
90% of the benchmark functions return results that are acceptable.
MOP-MFO's high-class performance when compared to other
variant algorithms is indicative of its excellent diversification
capabilities. MOP-MFO is more adept at balancing global and
local searches.

MOP-MFO can be modified
optimization, combinatorial optimization, and constrained
optimization issues; so, it has vast potential for further
development and improvement. QIWOA can also be used to
address more intricate issues in the actual world.

to address multi-objective

Appendix-1

Table 1(a): Formalization of unimodal functions in mathematics

. T . - SN Func. Mathematical formula a min Search
variables. As limitations, we use the variables' ranges. Fig. 2 ‘ ! space
depicts the schematics of the aforementioned issue. £ Sphere . _ix: % ’ Fee. 1001
- 1
&
F2 Cigar d 30 0 1-100, 100]
f(x) = 1052,(,:
i
F3 Ste d 30 0 [-100, 100]
¥ fx) = Z(x,+o.5)=
i=1
F4 Rosenbrock d 30 0 [2.048,2.048]
€ = 3 (100(s00 57 + 05~ 17]
=1
| F5 Schwefel 12 : 4 T 30 0 [-100, 100]
w33
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Table 5: Comparison results of MOP-MFO on problem of gear Wheres= 143 41,
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Table- 1(b): Formalization of multimodal functions in
mathematics

Apendix-2
The Gas Industry's Optimal Production Capacity Problem:
Min f(x) = 61.8 + 5.72 x x; X 0.2623

X, 17085
[(40—X1)Xlnm
.087 x (4 XIn—
+0.087 x (40 —x,) nzoo

+700.23 x x;°%7°
s.t.x; = 17.5,x, =200, 17.5 < x; < 40,300 < x, < 600;

The problem of Gear Train Design:

Minimize f(X) = [ X3X2]2,

6.931 X1Xa

Subjected to 12 < Xq, X5, X3,X4 < 60,

[nanBnynd].
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