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Abstract: Ancient paintings are invaluable treasures that offer deep insight into the culture, history, and artistic expression of 

civilizations. Over time, these artworks undergo physical degradation, including the formation of cracks and flakes. 

Traditionally, such defects are inspected and restored by skilled conservators, but this manual approach is time-consuming, 

subjective, and may pose risks to the artifacts. With recent advancements in artificial intelligence and deep learning, 

automated crack detection systems offer promising alternatives for efficient, accurate, and non-invasive analysis. This 

research paper presents a deep learning-based approach for detecting surface cracks in ancient paintings. A dataset of high-

resolution cracked and non-cracked images was prepared and enhanced using augmentation techniques. The study evaluates 

multiple deep learning architectures, including InceptionV3, ResNet50, VGG16, and a custom-built CNN, using transfer 

learning for improved performance. The model was trained and tested using robust preprocessing and evaluation metrics, 

achieving high accuracy in binary classification tasks. This research contributes to digital preservation by enabling accurate 

detection of defects, thereby assisting conservators in restoration work. 
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 I INTRODUCTION 

Art and cultural heritage artifacts serve as repositories of 

history, societal values, and aesthetic achievements. 

Paintings, in particular, encapsulate centuries of tradition, 

technique, and symbolism. However, the fragility of these 

artworks poses significant challenges for conservation. 

Environmental factors such as humidity, temperature 

variation, and light exposure cause physical damage in the 

form of surface cracks, flaking paint, and discoloration [5], 

[6]. Preservation of such artifacts requires not only traditional 

expertise but also modern tools that minimize risk and 

maximize precision. 

As museums, restoration labs, and research 

institutions digitize their collections, image-based analysis 

techniques have emerged as powerful tools in conservation 

science. Convolutional Neural Networks (CNNs) offer the 

ability to identify intricate patterns within images that may 

not be readily apparent to the human eye [3], [12]. These 

models can distinguish between actual cracks and 

background textures, hairline designs, or brush strokes. 

Leveraging this capability, automated crack detection 

systems can significantly improve efficiency in conservation 

workflows while reducing human error [2], [8]. 

Manual inspection of artwork surfaces is labor-

intensive and limited by the subjective interpretation of the 

examiner. Conservators face difficulty distinguishing 

between naturally occurring fine lines and structural cracks, 

especially when relying on low-resolution or faded images 

[7], [20]. The need for a reliable, automated detection 

mechanism becomes essential when scaling operations to 

large collections or rare artifacts that cannot withstand 

repeated handling. 

The proposed work seeks to overcome these 

limitations by using deep learning to detect cracks with high 

accuracy. The system is designed to be robust against 

variations in lighting, orientation, and resolution. It addresses 

the critical problem of differentiating genuine cracks from art 

features that visually resemble them. Our model’s 

effectiveness is enhanced through data augmentation and 
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transfer learning strategies, allowing it to generalize across 

diverse painting styles and damage types [1], [3], [10]. 

The proposed work seeks to overcome these limitations by 

using deep learning to detect cracks with high accuracy. The 

system is designed to be robust against variations in lighting, 

orientation, and resolution. It addresses the critical problem 

of differentiating genuine cracks from art features that 

visually resemble them. Our model’s effectiveness is 

enhanced through data augmentation and transfer learning 

strategies, allowing it to generalize across diverse painting 

styles and damage types. 

II LITERATURE REVIEW 

To develop an effective crack detection system for ancient 

paintings, it is essential to understand the evolution of related 

methodologies and technologies. This section reviews the 

theoretical foundations of image-based crack detection, with 

a focus on traditional image processing techniques and the 

transformative impact of deep learning. It also explores 

previous research efforts that have applied machine learning 

models to cultural heritage preservation. 

A. Theoretical Background 

Crack detection has historically relied on conventional image 

processing techniques such as edge detection, thresholding, 

and morphology-based operations. These methods are 

relatively simple but often fail when cracks blend into 

textured backgrounds or when image noise is high [4], [6]. 

Moreover, the variability in painting styles, materials, and 

lighting conditions makes hand-crafted feature extraction 

methods inadequate for consistent performance. 

Recent advancements in deep learning, especially 

Convolutional Neural Networks (CNNs), have significantly 

improved the capability of systems to learn robust features 

automatically from image data. CNNs exploit spatial 

hierarchies in visual data and learn increasingly abstract 

representations through layered convolution and pooling 

operations. This capability enables them to outperform 

classical approaches in classification and segmentation tasks, 

particularly in complex visual environments such as heritage 

artwork [1], [2], [14]. Their adaptability makes them suitable 

for crack detection in diverse collections where patterns and 

textures vary significantly. 

B. Previous Research 

Sizyakin et al. [1] introduced a multimodal crack detection 

approach using a deep CNN trained on RGB, infrared, and X-

ray images. The model localized cracks with high precision 

and improved detection robustness by leveraging information 

across multiple spectra. Similarly, Chen and Jahanshahi [2] 

presented NB-CNN, a system that combines CNN outputs 

with a Naïve Bayes data fusion strategy to improve the 

temporal stability of crack detection in video sequences. 

Xu et al. [3] proposed a weakly supervised CNN model for 

surface defect detection that performs well even with limited 

labeled data, addressing one of the critical bottlenecks in 

training deep models. Cornelis and Ruzic [4] integrated crack 

detection with digital inpainting to simulate restoration on 

paintings such as the Ghent Altarpiece, providing a virtual 

preview of conservation outcomes. Further, Guo et al. [23] 

applied low-rank matrix approximation for image inpainting, 

aiding the post-detection restoration of damaged areas. 

Patch-based inpainting using Markov Random Fields (MRFs) 

was advanced by Ghorai et al. [25], demonstrating successful 

crack concealment in digitally restored artworks. Zeng and 

Gong [7] tailored restoration models for ancient Chinese art 

using nearest neighbor algorithms. Nguyen et al. [15] 

developed a B-spline level-set model optimized for crack 

extraction in noisy 2D imagery, offering high accuracy for 

surface-level damage detection. These works collectively 

establish the viability of combining detection with 

restoration, although they continue to face challenges such as 

generalization to various artistic styles, processing time, and 

resource efficiency. 

III SYSTEM ARCHITECURE AND DESIGN 

Building on insights from the literature, this section presents 

the proposed system architecture designed for automated 

crack detection in ancient paintings. The framework is 

organized into modular components that handle data 

preprocessing, model training, evaluation, and visualization. 

Each module is optimized for scalability, efficiency, and ease 

of integration into conservation workflows. System 

architecture is shown in figure 1. 

 A. Modular Design 

The system is architected as a modular pipeline that includes 

distinct components for data handling, model training, 

evaluation, visualization, and testing. The Data Module is 

responsible for acquiring images, preprocessing them, 

augmenting the dataset, and partitioning it into training, 

validation, and testing sets. This ensures a well-balanced 

dataset essential for effective training. 

The Model Module defines the CNN architecture, which 

includes the configuration of layers, activation functions, and 

dropout strategies. It accommodates both pre-trained models 

and custom architectures. Transfer learning is implemented 

by freezing the base layers of the model and appending task-

specific dense layers for binary classification. 

B. Data Flow and Evaluation  

The Training Module executes the training process by 

compiling the model with the Adam optimizer and binary 

cross-entropy loss. Training is guided using callbacks like 

early stopping and learning rate reduction to prevent 

overfitting. The Evaluation Module computes metrics such as 

precision, recall, F1-score, and accuracy, using confusion 

matrices and classification reports for interpretability. 
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Visualization plays a key role in understanding model 

behavior. The Visualization Module displays 

training/validation accuracy and loss graphs, as well as 

predicted crack locations. The Testing Module performs 

integration and user acceptance testing to verify system 

performance and usability across different use cases, 

particularly in conservation labs or museums. 

 

Figure 1. System Architecture

IV DATASET AND PREPROCESSING 

A well-constructed and properly preprocessed dataset is 

fundamental to the success of any deep learning model. This 

section outlines the process of dataset compilation, 

augmentation, and preparation to ensure robust training and 

accurate crack detection. Emphasis is placed on achieving 

class balance, improving generalization, and maintaining 

consistency across input images. 

A. Dataset Construction 

The dataset consists of 700 original images—350 showing 

cracked surfaces and 350 non-cracked. These high-resolution 

images were carefully curated from digital archives and 

manually labeled. Due to the relatively small dataset size, 

extensive data augmentation was performed using 

TensorFlow's ImageDataGenerator to expand the dataset and 

improve the model’s generalization capability. 

Augmentation methods included rotation, shifting (horizontal 

and vertical), shearing, zooming, and horizontal flipping. 

Each image was augmented twice, resulting in a final dataset 

of over 2,100 images. These were then organized into 

separate directories for cracked and non-cracked classes and 

split into training (70%), validation, and testing (30%) sets. 

B. Preprocessing Steps 

Before feeding images into the CNN model, preprocessing 

was performed to ensure uniformity and model compatibility. 

All images were resized to 224×224 pixels and normalized to 

a pixel value range of [0, 1] by dividing each value by 255. 

This normalization improves training stability and 

convergence. 

Batch generation was handled using Keras’ data generator, 

which yields batches of data for training and evaluation. 

Preprocessing also included reshaping and conversion from 

PIL format to NumPy arrays for compatibility. These steps 

laid the foundation for robust model training and ensured that 

the CNN receives data in a format conducive to optimal 

learning 

V MODEL ARCHITECTURE AND TRAINING 

This section details the deep learning architectures employed 

for crack detection, including both pre-trained models and a 

custom-designed CNN. Emphasis is placed on the use of 

transfer learning to leverage existing image features and 

improve performance on limited datasets. The training 

process, optimization techniques, and key hyperparameters 

are also discussed to provide insight into the model 

development pipeline.E. Authors and Affiliations 

A. Model Selection and Transfer Learning 

In this study, four deep learning architectures were selected 

for evaluation: InceptionV3, ResNet50, VGG16, and a 

custom Convolutional Neural Network (CNN) [28], [29], 
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[30]. Transfer learning was utilized for the pre-trained models 

(InceptionV3, ResNet50, and VGG16), allowing reuse of 

previously learned image features from large-scale datasets 

such as ImageNet. Only the final dense layers were retrained, 

while the convolutional base was frozen to preserve valuable 

low-level features [1], [2]. 

The ResNet50 architecture, with its skip connections and 

deep structure, is effective for capturing subtle crack patterns 

across varying image contexts. InceptionV3 employs parallel 

convolution filters of different sizes, enhancing its ability to 

detect features across multiple scales. VGG16, though deeper 

and simpler in structure, provides a strong baseline for 

comparison due to its uniform filter size and effective 

hierarchical feature extraction [3]. 

B. Custom CNN Architecture and Training Parameters 

The custom CNN was built with multiple convolutional and 

max-pooling layers, followed by batch normalization and 

dropout layers to prevent overfitting [31], [32], [33]. The 

model concludes with a dense output layer using the sigmoid 

activation function for binary classification. Key training 

parameters include: 

 Optimizer: Adam with a learning rate of 1e-4. 

 Loss Function: Binary Crossentropy with label 

smoothing of 0.125. 

 Callbacks: EarlyStopping (patience=10) and 

ReduceLROnPlateau (factor=0.5). 

Training was conducted for 30 epochs with a batch 

size of 16. The model achieved convergence within 20–25 

epochs in most configurations, demonstrating efficient 

learning without overfitting. Data generators handled real-

time augmentation and feeding of data batches into the 

training loop, improving resource utilization and scalability 

[4]. 

VI IMPLEMENTATION AND TOOLS 

With the model architecture defined, this section focuses on 

the practical implementation and tools used to develop, train, 

and evaluate the crack detection system. The project 

leverages widely adopted libraries and platforms to ensure 

reproducibility and efficiency. Key aspects such as the 

development environment, evaluation methods, and 

visualization tools are discussed to highlight the system's 

usability and integration potential [33], [34]. 

A. Development Environment 

The project was implemented using Python on Google Colab, 

a cloud-based Jupyter Notebook environment offering free 

GPU access. The use of Colab facilitated faster training, 

easier visualization, and real-time collaboration. Libraries 

such as TensorFlow, Keras, NumPy, and Matplotlib were 

used for model development, data handling, and result 

visualization. 

 TensorFlow & Keras: Core deep learning 

frameworks for model building and training. 

 NumPy: Used for data manipulation and matrix 

operations. 

 Matplotlib: Used for plotting training accuracy/loss 

graphs and confusion matrices. 

 Pandas & OS Libraries: Assisted with dataset 

management and file operations. 

B. Tools for Evaluation and Visualization 

Confusion matrices and classification reports were generated 

using scikit-learn, which provided insight into true positives, 

false positives, precision, recall, and F1-score. Accuracy and 

loss curves were plotted for each model to observe training 

dynamics. Visual inspection of prediction results was 

conducted by overlaying detected crack regions on original 

images, offering intuitive verification of model predictions. 

The final model was saved in .h5 format for future 

deployment and integration into museum conservation 

pipelines or restoration labs. The simplicity of the 

implementation environment allows for replication and 

scalability across similar heritage analysis projects. 

VII EVALUATION AND RESULTS 

After training and implementation, the performance of the 

proposed crack detection models was systematically 

evaluated using both quantitative metrics and qualitative 

analysis. This section presents a comparative assessment of 

various architectures, highlighting their accuracy, precision, 

recall, and F1-scores. It also includes visual validation of the 

model predictions to demonstrate effectiveness in real-world 

scenarios. 

A. Quantitative Performance 

Each model was evaluated using precision, recall, F1-score, 

and overall accuracy on the test set. Table I  and figure 2 

summarizes the classification performance across all models. 

Table I: Model Performance Comparison 

Model Accuracy Precision Recall F1-

Score 

ResNet50 98.6% 98.4% 98.9% 98.6% 

InceptionV3 98.1% 97.9% 98.2% 98.0% 

CNN 97.4% 96.8% 97.6% 97.2% 

VGG16 96.9% 96.5% 97.1% 96.8% 

The ResNet50 model outperformed the others, likely due to 

its deeper architecture and ability to learn residual features. 

All models achieved near-perfect classification, showing that 

even a moderately sized dataset, when enhanced with 

augmentation and transfer learning, can yield high-quality 

results [1], [2]. 
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Figure 2. Performance comparison 

B. Qualitative Analysis 

Visualization of predictions confirmed that the models 

accurately detected various types of cracks, including hairline 

fractures and irregular flaking. Misclassifications were 

primarily observed in images where fine artistic details 

closely resembled crack patterns. Despite this, the model was 

able to generalize well across different textures and color 

schemes. 

The use of early stopping and learning rate scheduling 

prevented overfitting, as shown by the plateauing of 

training/validation loss. This balance between precision and 

generalization is crucial for real-world deployment where 

unseen data may vary in lighting, resolution, and structural 

complexity. 

VIII.EVALUATION AND RESULTS 

This crack detection system has several advantages over 

traditional manual inspection: 

1. Non-Invasiveness: The system requires only digital 

images, eliminating the need for physical contact 

with delicate artworks. 

2. Scalability: Museums and archives can process 

thousands of images with minimal human 

intervention. 

3. Accuracy: High classification metrics ensure 

consistent and reliable crack identification across 

diverse art styles and degradation levels. 

4. Integration: The trained model can be deployed 

into mobile apps, AR tools, or museum databases for 

live inspection or restoration assistance. 

Practical applications include automated artwork assessment, 

authenticity verification, pre-restoration diagnostics, and 

educational visualization of damage progression over time. 

The system can also serve as a module in broader heritage 

digitization initiatives, offering insight into the structural 

integrity of ancient artifacts. 

LIMITATIONS AND FUTURE WORK 

While the proposed system demonstrates strong performance 

in detecting cracks across diverse painting styles, certain 

limitations remain. This section outlines the current 

challenges related to image quality, model generalization, and 

deployment constraints. It also proposes future directions to 

enhance model robustness, expand functionality, and extend 

applicability to broader conservation and restoration tasks. 

A. Current Limitations 

Despite its success, the proposed system has some 

limitations. Image quality significantly influences detection 

performance; low-light or blurry images reduce crack 

visibility. Furthermore, high-frequency textures or intricate 

brush strokes can confuse the model, leading to false 

positives. The model is also restricted to binary classification 

and cannot yet identify the type or depth of the crack. 

Computational limitations on large-scale real-time 

deployments are also noteworthy. Though training was 

feasible on Google Colab, inference speed may need 

optimization for mobile or embedded applications. 

B. Future Enhancements 

Future research will focus on expanding the dataset with 

more diverse artwork types and degradation patterns. 

Incorporating infrared and ultraviolet imaging, as 

demonstrated by Sizyakin et al. [1], can improve crack 

visibility under different light spectrums. Integration of 

attention mechanisms or vision transformers may also 

enhance the model’s contextual understanding. 

Further, the inclusion of image inpainting models can help 

build an end-to-end restoration pipeline, automatically 

detecting and digitally restoring cracked paintings. Finally, 

research into restoring not just paintings but sculptures, 

manuscripts, and architectural fragments can broaden the 

impact of this work. 

 

IX CONCLUSION 

This study presents a comprehensive deep learning-based 

framework for detecting cracks in ancient paintings. 

Leveraging CNN architectures and transfer learning, the 

system achieves high accuracy in identifying subtle and 

complex crack patterns. Through careful dataset preparation, 

rigorous preprocessing, and effective model evaluation, the 

solution offers a non-invasive, scalable, and accurate tool for 

art conservation. As museums and cultural institutions 

increasingly turn to digital technologies, such automated tools 

will become essential for sustainable preservation practices. 

The proposed model contributes meaningfully to this shift, 

demonstrating how modern AI can support the timeless task 

of heritage conservation. 
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