
|| Volume 8 || Issue 2|| 2025 || ISO 3297:2007 Certified ISSN (Online) 2456-3293

 WWW.OAIJSE.COM 39

Object Detection Using Deep Learning

Aakansha Desale1, Arya Padvi2, Mohit Datir3, Onkar Jaybhaye4, Prof. Abhay Gaidhani5

Department of Computer Engineering, Sandip Institute of Technology and Research Centre, Nashik- 422213, India1,2,3,4,5

--

Abstract: The Advanced Object Detection System is an innovative deep learning solution designed to accurately detect and identify

objects in images. Utilizing convolutional neural networks (CNNs), the system automatically learns features from a diverse set of

annotated images, enabling precise object detection and classification. Built on popular deep learning frameworks such as

TensorFlow or PyTorch, the system incorporates advanced CNN architectures like the Single Shot Multibox Detector (SSD) to

optimize performance in real-time scenarios. Key features include transfer learning and fine-tuning, which accelerate training and

improve the system's ability to handle challenges such as objects of varying sizes, poses, and occlusions. By integrating pre- trained

models on large datasets like ImageNet, the system quickly learns to identify and classify objects with high accuracy. The model is

rigorously tested using benchmark datasets such as COCO, with mean average precision (mAP) used to evaluate performance. The

system detects objects in real-time and, using a trained dataset, identifies and classifies them based on learned features. This

approach ensures efficient and reliable object detection models suited to a variety of applications.

Keywords: Object Detection, Convolutional Neural Networks (CNNs), Deep Learning, Supervised Learning, Feature Extraction,

Real-time Detection, CNN, SSD (Single Shot MultiBox Detector), Transfer Learning, Pre- trained Models, PyTorch, MobileNet,

COCO Dataset.

--

I.INTRODUCTION

Object detection and tracking are essential in computer vision, with

applications spanning fields like surveillance, robotics,

autonomous driving, and augmented reality.

These tasks involve identifying objects in images or videos and

tracking their movement over time. While traditional approaches

relied on manually crafted features and classifiers, deep learning

has significantly improved both accuracy and efficiency.

Early object detection methods, which utilized features like SIFT

(Scale-Invariant Feature Transform) and HOG (Histogram of

Oriented Gradients) with classifiers such as Support Vector

Machines (SVMs), were effective in controlled environments but

struggled with real-world challenges like lighting changes,

occlusions, and object deformation.

The manual feature engineering required in these methods also

limited adaptability.With deep learning, convolutional neural

networks (CNNs) automate feature extraction, capturing complex

patterns directly from pixel data.

The Single Shot Multibox Detector (SSD) is a popular deep

learning algorithm for object detection, as it balances speed and

accuracy by predicting bounding boxes and object classes in a

single forward pass.

This efficiency makes SSD suitable for real-time applications on

limited resources.

In object tracking, deep learning-based methods surpass traditional

tracking methods by learning appearance and motion patterns

directly from data.

Modern approaches combine detection and tracking, using

models like SSD to initialize and Despite advancements,

challenges remain, particularly in real-time processing for

edge devices.

As research continues, efforts are focused on making

detection and tracking systems more robust, efficient, and

scalable for broader applications like autonomous vehicles,

robotics, and security

II.LITERATURE SURVEY

http://www.oaijse.com/

|| Volume 8 || Issue 2|| 2025 || ISO 3297:2007 Certified ISSN (Online) 2456-3293

 WWW.OAIJSE.COM 40

II.METHODOLOGY

Thing discovery and following using deep erudition methods

represent a vital aspect of computer vision.

This methodology outlines the important ladders and methods

involved in developing a real scheme for thing discovery

andfollowing, emphasizing the utilization of bottomless learning

methodologies.

Data collection and preparation: Gather adataset of labeled images

or videos that contain the objects of interest.

Annotate the objects through leaping containers or division covers.

Riven the dataset into exercise, authentication, and challenging

sets.

Model selection: Choose a bottomless erudition-grounded object

uncovering model that suits your requirements.

Popular choices include CNN, MobileNet, and SSD. Consider

factors such as accuracy, speed, and resource constraints.

Pretrained model initialization: Initialize the selected model with

weights from a pretrained model on a big-gage dataset, such as

ImageNet. This helps in leveraging the learned representations and

speeds up the training process.

Transfer learning: Acceptable melody the pretrained classical on

your labeled dataset. Train the classical on your labeled dataset.

Train the classical to object detailed features and improve its ability

to detect objects accurately.

III.SYSTEM ARCHITECTURE

 Fig. Object Detection Flowchart

HARDWARE AND SOFTWARE REQUIREMENT

System Requirements for Object Detection

1.Computer(CPU)

A standard desktop or laptop equipped with a multi-core processor

is sufficient for object detection tasks. However, higher

performance—especially in terms of frame rate—can be achieved

with a more powerful processor.

2.GPU

A dedicated GPU can significantly accelerate processing times. This

is particularly important when working with high-resolution images

or when real-time detection is required.

3.Webcam/Camera

An integrated or external camera is necessary for capturing real-time

video input. For optimal object detection performance, the camera

should support a minimum resolution of 720p.

4.Memory(RAM)

A minimum of 4GB RAM is required. However, 8GB or more is

recommended to ensure smooth performance, especially when

running multiple applications simultaneously.

5.Storage

A few gigabytes of available storage are needed to accommodate the

software and model files. Solid State Drives (SSDs) are preferred

due to their faster read/write speeds, which contribute to overall

system responsiveness.

SOFTWARE SPECIFICATIONS

Software Requirements for Object Detection

1.OS

The code is cross-platform and can run on Windows, macOS, or

Linux without modification. Ensure that system dependencies such

as Python, OpenCV, and CUDA (for GPU acceleration) are properly

installed according to the chosen operating system.

2.Python

Python 3.6 or higher is required to ensure compatibility with

essential libraries such as OpenCV, NumPy, and TensorFlow. It is

http://www.oaijse.com/

|| Volume 8 || Issue 2|| 2025 || ISO 3297:2007 Certified ISSN (Online) 2456-3293

 WWW.OAIJSE.COM 41

recommended to configure your Python environment properly using

virtual environments like venv or conda for better package

management and isolation.

3.OpenCV

• Install OpenCV (preferably version 4.x or higher), which

includes the DNN module needed for deep learning-based

object detection.

• Make sure that OpenCV supports backend frameworks like

TensorFlow or Caffe for loading the SSD MobileNet pre-

trained model.

4.NumPy

• Install NumPy, which plays a critical role in fast and

efficient array manipulations, especially for handling image

data.

• NumPy is also essential for performing matrix operations

such as scaling and transforming image inputs.

5.Pre-trained Model Files

• Download the SSD MobileNet V3 pre-trained model from

TensorFlow’s Model Zoo.

• The frozen inference graph file contains the pre-trained

model weights.

• The configuration file defines the network architecture of

the model.

• The COCO names file includes the list of object class

names that the model is trained to recognize.

IV.RESULT

RESULT ANALYSIS

V.OUTPUT

DETECTED OBJECTS – CELLPHONE, SCISSORS

DETECTED OVERLAPPING OBJECTS LIKE BOTTLE,

CELL PHONE, PERSON

VI.REFERENCES

[1] Shaoqing Ren, Kaiming He, Ross B. Girshick, Jian Sun,

"Faster R-CNN: Towards Real-Time Object Detection with Region

Proposal Networks," Advances in Neural Information Processing

Systems, vol. 28, pp. 91–99, [2015].

[2] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg, "SSD:

Single Shot MultiBox Detector," Proc. European Conf. Computer

Vision (ECCV), pp. 21–37, [2016].

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, "Deep

Residual Learning for Image Recognition," Proc. IEEE Conf.

Computer Vision and Pattern Recognition (CVPR), pp. 770–778,

[2016].

[4] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,

Hartwig Adam, "MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications," arXiv preprint

arXiv:1704.04861, [2017].

[5] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr

Dollár, "Focal Loss for Dense Object Detection," Proc. IEEE Int.

Conf. Computer Vision (ICCV), pp. 2980–2988, [2017].

[6] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr

Dollár, "RetinaNet: Focal Loss for Dense Object Detection," Proc.

IEEE Int. Conf. Computer Vision (ICCV), pp. 2999–3007, [2017].

[7] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, Xindong Wu,

"Object Detection with Deep Learning: A Review," IEEE Trans.

Neural Netw. Learn. Syst., vol. 30, no. 11, pp. 3212–3232, [2019].

[8] Joseph Redmon, Ali Farhadi, "YOLOv3: An Incremental

Improvement," arXiv preprint arXiv:1804.02767, [2018].

[9] Mengyuan Liu, Hong Liu, et al., "Real-Time Object Detection

Using MobileNet-SSD," arXiv preprint arXiv:1809.00790, [2018].

[10] Shizhong Yang, Lei Wang, et al., "Deep Learning for Object

Detection: A Review," J. Comput. Sci. Technol., vol. 34, no. 4, pp.

799–822, [2019].

[11] Tsung-Yi Lin, et al., "Lightweight Object Detection Models

for Autonomous Driving," IEEE Trans. Intell. Transp. Syst., vol.

21, no. 2, pp. 750–761, [2020].

[12] Joseph Redmon and Ali Farhadi, "YOLOv3: An Incremental

Improvement," arXiv preprint arXiv:1804.02767, [2018].

http://www.oaijse.com/

|| Volume 8 || Issue 2|| 2025 || ISO 3297:2007 Certified ISSN (Online) 2456-3293

 WWW.OAIJSE.COM 42

[13] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan

Mark Liao, "YOLOv7: Trainable bag-of-freebies sets new state-of-

the-art for real-time object detectors," arXiv preprint

arXiv:2207.02696, [2022].

[14] Chuyi Li et al., "YOLOv6: A Single-Stage Object Detection

Framework for Industrial Applications," arXiv preprint

arXiv:2209.02976, [2022].

[15] Muhammad Yaseen, "What is YOLOv9: An In-Depth

Exploration of the Internal Features of the Next-Generation Object

Detector," arXiv preprint arXiv:2409.07813, [2024].

[16] Ao Wang et al., "YOLOv10: Real-Time End-to-End Object

Detection," arXiv preprint arXiv:2405.14458, [2024].

[17] Yunjie Tian, Qixiang Ye, and David Doermann, "YOLOv12:

Attention-Centric Real-Time Object Detectors," arXiv preprint

arXiv:2502.12524, [2025].

[18] Athulya Sundaresan Geetha, "YOLOv4: A Breakthrough in

Real-Time Object Detection," arXiv preprint arXiv:2502.04161,

[2025].

[19] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan

Mark Liao, "YOLOv4: Optimal Speed and Accuracy of Object

Detection," arXiv preprint arXiv:2004.10934, [2020].

[20] Glenn Jocher et al., "YOLOv5," GitHub repository, [2020].

[21] Bochkovskiy Alexey, Wang Chien-Yao, and Liao Hong-Yuan

Mark, "YOLOv4: Optimal Speed and Accuracy of Object

Detection," arXiv preprint arXiv:2004.10934, [2020].

[22] Felix Nobis, Maximilian Geisslinger, Markus Weber,

Johannes Betz, Markus Lienkamp, "A Deep Learning-based Radar

and Camera Sensor Fusion Architecture for Object Detection,"

arXiv preprint, [2020].

[23] Syed Sahil Abbas Zaidi, Mohammad Samar Ansari, Asra

Aslam, Nadia Kanwal, Mamoona Asghar, Brian Lee, "A Survey of

Modern Deep Learning based Object Detection Models," arXiv

preprint, [2021].

[24] Zhaoxin Fan, Yazhi Zhu, Yulin He, Qi Sun, Hongyan Liu, Jun

He, "Deep Learning on Monocular Object Pose Detection and

Tracking: A Comprehensive Overview," arXiv preprint, [2021].

[25] Satya Prakash Yadav, Muskan Jindal, Preeti Rani, Victor

Hugo C. de Albuquerque, Caio dos Santos Nascimento, Manoj

Kumar, "An Improved Deep Learning-based Optimal Object

Detection System from Images," Multimedia Tools and

Applications, [2023].

[26] Xiangrong Zhang, Tianyang Zhang, Guanchun Wang, Peng

Zhu, Xu Tang, Xiuping Jia, Licheng Jiao, "Remote Sensing Object

Detection Meets Deep Learning: A Meta-review of Challenges and

Advances," arXiv preprint, [2023].

[27] Md Pranto, Omar Faruk, "Object Detection and Tracking,"

arXiv preprint, [2025].

http://www.oaijse.com/

