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Abstract: Exact analytical solution of Schrodinger equation is solved using the spherically symmetric interquark potential 

consisting of harmonic oscillator term with linear energy dependence as the confinement part and the inverse square 

potential as the asymptotic part in nonrelativistic frame of reference. Spin dependent heavy quark spectroscopy is 

obtained by adding Breit-Fermi correction term to the interaction for cc  and bb  system. Further predicted values of 

fine and hyperfine splitting of S and P states are compared with the results of recent experiment and other authors. 

According to our calculation, hyperfine splitting of 1S and 2S and their ratio are of bb  system is close to experimental 

value as showing importance of asymptotic term added in energy dependent potential.  
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 I INTRODUCTION 

The investigation of properties of mesons composed of 

heavy quark and antiquark throw important light into heavy 

quark dynamics. Heavy flavour cc  and bb  meson have rich 

spectroscopy with narrow states of charmonium and 

bottonium below threshold.  These systems are analogous to 

positronium system. In the recent years, a number of new 

states have been claimed in experiment, several of which 

cannot be reconciled with the prediction of simple quark 

potential models. Theoretically potential models are used for 

deeper understanding of strong interaction between quark 

antiquark. Many potential models have been designed to 

reproduce spin dependent meson spectroscopy but have their 

limits. In earlier studies it is found that mass spectra shows 

saturation effect which means that as the quantum numbers 

increase the energy eigen values increase an upper bound. 

Our potential is motivated by this fact. Original form of 

energy dependent potential was used by Lombard [1] 

consisting of only confinement part. In our previous study 

[2], this potential is extended for asymptotic part also and 

formulated to describe the properties of quarkoniua.  The 

experimental spectra of cc  and bb  systems exhibit fine 

structure and hyperfine splitting. The difference between 

energy of triplet (3S1) and singlet (1S0) for cc  system is 

around 100 MeV and 50 MeV for n=1 and 2 respectively. 

These are estimated by adding Breit Fermi relativistic 

correction to the interaction.  The Schrodinger equation with 

the complete potential has been solved exactly for radially 

and orbitally excited state of the system and the eigen values 

and eigen functions are calculated. The spin hyperfine 

interaction of vector and pseudoscalar states, are important 

property of quarkonia that provide better understanding of 

quark antiquark dynamics within the meson,  

The paper is organized as follows. The 

Mathematical formulation and details of calculation have 

been given in section II. Results are summarized in section 

III. Finally in section IV, summary and conclusions are given. 

II MATHEMATICAL FORMULATION AND DETAILS 

OF CALCULATION 

A. Mass Spectra  

 A conventional meson can be described by the wave 

function of the bound quark antiquark state, which satisfies 

non-relativistic Schrodinger equation with chosen spherically 

symmetric potential 
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Where ω, γ and g are constants. 

The three dimensional Schrodinger equation in the center - of 

- mass system is 
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 Where the reduced mass µ  in terms of quark mass qm  

and antiquark mass q
m is  
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In natural units 1 c  is considered. 

 

The wave function is written as          
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     u (t)s are  the solution of the radial equation, which are 

bounded at infinity and  are zero at the origin.  As t tends to  

 , the bounded   solution behaves like exp(-t/2) and since 

t=0 is a singularity of equation (3) we seek for a solution in 

the form, 
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in which,  on account of boundary condition,    has to be 

positive. Substituting equation (4) into equation (3) and 

taking  
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4

1 2   ,                                                        

(5)                 

   Resulting equation leads to the following equation  
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Apart from the constant factor the nonsingular solution of 

equation (6) is the Confluent Hypergeometric series [24]  
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 u(t) increases without bound as t unless the series F 

reduces to a polynomial. This occurs only if 
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which   implies that the energy eigenvalue  
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where           gna 8)12(24 2    

 ,nE are   the eigenenergies classified by principal  and 

angular quantum numbers n and  where   ≤ (n-1). The 

quark mass is connected to the physical mass as M (qq) = 

2mq+E1s. 

                     The method of calculating the leading relativistic 

correction to the energy spectrum of quarkonia is to add 

Breit- Fermi interaction ( HBF ). It consists of three types of 

spin dependent interaction terms viz. spin spin, the spin orbit 

and tensor part given as [25] 
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 Where   is relative orbital angular momentum, S the total 

spin of two quarks. 

HBF can be generated from the scalar and vector gluon 

exchange components of the interquark potential  

For the potential used in the present work 

V (r, E n,l) =VV(r) + VS(r), 

where 
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Thus Fine structure of P  mesonic state is described by 

radially dependent potential functions the spin orbit term 

V  S(r)  and tensor term VT(r) while the spin singlet triplet 

hyperfine splitting are described by the term VSS(r) given as 
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 Assuming a, b and c   correspond to expectation values of 

potential functions )(rVlS , )(rVT
and )(rVSS  respectively, 

the fine hyperfine level splitting can be calculated by the 

following mass formulae for different orbital states.  

(i) For S states                     
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(i) For P states   
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Where Mn,P (Mn,S) are  spin average masses for the   orbital 

(S spin) state of quarkonium obtained from the exact 

numerical solution.   

 The hyperfine splitting is defined as   
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 where M c.o.g., the center of gravity of the triplet states is  
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According to   Rayleigh-Schrodinger perturbation theory in 

the first order approximation [26, 27] the hyperfine splitting 

is also related to the square of modulus of wave function at 

the origin and dependent on the strong coupling constant S 

as 
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Also P wave splitting is characterized by the parameter P 

wave splitting [28] is given by  
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  b. Leptonic decay width of heavy qaurkonia:  The 

leptonic decay width of system M q q  e+ e- is calculated 

according to Van Royen- Weisskoph formula [29].   
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Where )0(
0nR  is the nonvanishing radial wave function of 

S wave  at the origin.  M ns is the mass of bound triplet 

(vector) state,  is the electromagnetic fine structure 

constant and eq the charge of quark in units of the electron 

charge (ec=2/3e, eb= -1/3e). This formula is true for energy 

dependent potential also.
 
 

Details of Calculation:  Firstly we obtain spin averaged 

mass spectra without introducing the Breit Fermi correction. 

The parameters ,    and g are obtained by fitting 

theoretically estimated values of E2S, E3S and center of 

gravity of E1P with respect to  E1S to the experimental data 

[10]. These in turn are used to predict eigenvalues of higher 

excited levels by solving the energy eigenvalue equation (9). 

In the literature, the charm quark mass is chosen between 1.2 

<mc<1.8 GeV whereas that of the bottom quark is between 

4.5< m b < 5.4 GeV. In the present work we have chosen the 

mass to be 1.5 GeV for the charm quark and 5.0 GeV for the 

bottom quark, which is almost at the mid values of above 

ranges. While solving non linear energy eigenvalue equation 

(9) only negative roots of  are accepted because negative 

values of  can compress the spectrum, a feature which is 
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observed experimentally. In the present work we have taken 

strong coupling constants s (m 2
c ) =0.37,  s (m 2

b)=0.26 

according to Particle Data Group 2010  [10] by well 

measured hyperfine splitting of 1S.

    

 

Once the parameters of the potential are fixed it is 

solved numerically with reduced radial Schrodinger equation 

in MATHEMATICA 8.0 by software program obtained by 

LUCHA et al   [11] for each quantum state separately. Using 

the spin dependent potential given by equation (10) 

eigenvalues of dimensionless Schrödinger equation is solved 

by numerical integration from -2 to 2 GeV in the steps of 0.1 

GeV for each quantum state separately. 

III RESULT AND DISCUSSIONS 

 Potential parameters obtained from the fit to the 

experimental data are shown in table 1. Full spin dependent 

spectra by adding Briet -Fermi correction term of radially and 

orbitally excited states are shown in fig 1 and 2 for cc and 

bb families respectively and compared with those of 

experimental values [10] wherever available. Thresholds   for 

strong decay   are at 2mD=3.729 GeV for cc  and at 

2mB=10.574 GeV for bb  quarkonia respectively shown as 

continuous dotted lines in the figures. 

Hyperfine splitting for S and P states are given in 

table 2 and table 3 respectively.  Also given for the 

comparison are the experimental data [10], values calculated 

from equation (24) and theoretical prediction [12] for S states 

and those of Hayask et al [13] for P waves. Striking feature 

for bb  system is that values of ΔM2S predicted by our 

potential is almost consistent with the average of 

experimental results 24.3 MeV and 48.7 MeV obtained by 

Belle  collaboration [14] and Dobbs et al. [15] respectively. 

Moreover ΔH1S =61MeV calculated by equation (24) is 

consistent with the result predicted by lattice QCD [16, 17]. 

 The ratio of 2S and 1S hyperfine splitting of bb  

system calculated by our potential model (35/65= 0.53) is 

almost equal to the average of two experimental result 

obtained by Belle[14] and Dobbs et al.[15] as 0.41and 0.72 

respectively.  

 The contribution of the mass arising from fine 

splitting   for 1P and 2P states for cc and  bb  systems are 

presented in table 4. The calculated values of ∆MP 

(difference between center of gravity of 3PJ and 1P1 state) for 

cc  is - 2.0 MeV against the experimental value of -0.9 MeV 

[18]. Our estimate is closer to the experimental data 

compared to those obtained by other authors [19, 20, 21].  

The predicted mass of 1P1 state of bb  system is 9.853 GeV 

which lies between 3PJ and 3P2.  

  The ratio of mass splitting χc [22] calculated from 

the equation (25) is shown in table 5 for both the systems and 

compared with the experimental value [10]. The splitting 

rises slowly in going from 1P to higher radial excitation, a 

trend also reflected in the experimental data of bb  system. It 

is pertinent to mention that interquark potentials which do not 

have asymptotic term exhibit the opposite trend [23].   

 As the hyperfine splitting is sensitive to the short 

range behavior of the potential, this feature can be attributed 

to the asymptotic component of the potential. 

IV SUMMARY AND CONCLUSION 

 A special class of energy dependent potentials has 

been used to obtain the mass spectrum of cc  and bb  
systems in the framework of non-relativistic quantum 

mechanics. Energy dependent potential employed in the 

earlier study of Lombard et al comprised of only the 

confinement term of harmonic oscillator potential with small 

linear energy dependence. Main drawback of the Lombard 

potential is that it does not have any asymptotic form. It is 

well known that any general form of quark interquark 

potential should have an asymptotic term and a confinement 

term. An asymptotic term is important to account for the low 

energy spectrum and the short range behavior of the wave 

function. In view of this, in the present work we have added 

an inverse square potential as the asymptotic term. With this 

particular form of potential Schrödinger equation is exactly 

soluble. After fixing the potential parameters by fitting the 

lower energy levels with the experimental data Fermi Breit, 

correction is added to the potential to obtain the complete 

spin dependent spectra. The potential is different from each 

quantum state. The Schrödinger equation is solved 

numerically for each state to obtain the eigen values and 

eigen functions. The mass spectra so obtained are in good 

agreement with the experimental data wherever available. 

The energy dependent factor provides small perturbation to 

harmonic oscillator and the spacing of levels deviate from 

equal spacing. γ gives long distance contribution to level 

spacing and makes the confinement force weaker than 

harmonic oscillator.  The main feature of introducing energy 

dependence is saturation effect in eigenvalues.  The degree of 

saturation is determined by energy dependent factor. This 

saturation can be attributed to wave function at origin (WFO) 

increases as one goes from cc  to  bb  (increasing reduced  

mass) [23] . Thus the heavier reduced mass system tends to 

spend lesser time in the deeper attractive region. 

Our results for hyperfine splitting are closer to the 

experimental data compared to the values obtained by other 

authors. The reason being both these quantities depend 

directly on the square of the modules of the wave function at 

the origin, which have been calculated exactly in our work. 

This shows the importance of the asymptotic term in the 

antiquark potential in determining the wave function at the 
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origin. As these results are sensitive to the quarkonium wave 

function, their successful prediction along with the 

spectroscopic prediction becomes an important measure of 

success of any theoretical model employed for the study of 

the quarkonia.  

Table 1: Spectroscopic parameters obtained from fit to 

experimental data for 2S 3S and 1P with respect to 1S 

states. 

 

Table 2: Hyperfine splitting of S wave in MeV of cc and 

bb  systems 

 

Table 3: Hyperfine splitting P wave in MeV of cc and bb  

systems 

 

 cc  bb  

States Calc  [13] expt  

[10] 

Calc [13] expt  

[10] 

13P1-11P1  -19 -10 -16 -5 -3.4 -12.21 

23P1-21P1 -13 - - -4 -3.5 - 

 

 

Table 4: Fine splitting of cc  and bb  systems in (MeV)
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 bb system 

1
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13 31 24 20 19.43 
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33 72 61 46 52.77 
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12 24 17 12 13.19 
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17 32 26 15 22.96 
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29 56 44 07 36.15 

Table 5: Ratio of mass splitting χ for ℓ=1, S=1 states of cc 

and bb  system 

 

 

 

 

  

fm
-1

 

  

GeV
-1

 

     G 

 GeV
-1

 

cc  0.233 -0.117      -0.194 

bb  0.187 -0.102 -0.044 

States 
                 cc  bb  

Our   eq   

 

(24) 

expt  

 

[10]  

[14] Our  eq  

(24) 

expt  

[10] 

[14] 

13S1-

11S0 

115 110 114 116 65 61 63 70 

23S1-

21S0 

40 38 47 89 35 29 24 35 

33S1-

31S0 

33 30 - 8 31 25 - 29 

43S1-

41S0 

28 25 -  29 21 -  
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Figure 1: Spin dependent mass spectrum of cc  quarkonia. 

Solid lines denote the levels which have been detected 

experimentally and dashed lines indicate the levels 

predicted by the potential model. 

 

Figure 2: Spin dependent mass spectrum of bb  quarkonia. 

Solid lines denote the levels which have been detected 

experimentally and dashed lines indicate the levels 

predicted by the potential model. 
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